研究快报

基于二氧化硅气凝胶制备的多层隔热材料微观结构及热性能研究

  • 盛 晨 ,
  • 于 云 ,
  • 于 洋 ,
  • 米 乐 ,
  • 唐根初 ,
  • 宋力昕
展开
  • (中国科学院 上海硅酸盐研究所, 无机涂层重点实验室, 上海200050)
SHENG Chen(1986–), male, candidate of master degree. Email: shengchen09@gmail.com

收稿日期: 2013-01-30

  修回日期: 2013-03-07

  网络出版日期: 2013-06-19

Microstructure and Thermal Characterization of Multilayer Insulation Materials Based on Silica Aerogels

  • SHENG Chen ,
  • YU Yun ,
  • YU Yang ,
  • MI Le ,
  • TANG Gen-Chu ,
  • SONG Li-Xin
Expand
  • (Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)
SHENG Chen(1986–), male, candidate of master degree. Email: shengchen09@gmail.com

Received date: 2013-01-30

  Revised date: 2013-03-07

  Online published: 2013-06-19

摘要

成功制备了一种新型多层隔热材料, 其间隔层基于氧化铝纤维制备, 并由溶胶-凝胶法植入二氧化硅气凝胶颗粒。在高真空环境下(10-3 Pa), 新型多层隔热材料当量热导率比传统材料低21.8%, 同时重量比传统材料降低了67.2%。此外, 这种新型多层隔热材料在1200 K的高温以及低真空条件下(100 Pa)也表现出良好的隔热性能。

本文引用格式

盛 晨 , 于 云 , 于 洋 , 米 乐 , 唐根初 , 宋力昕 . 基于二氧化硅气凝胶制备的多层隔热材料微观结构及热性能研究[J]. 无机材料学报, 2013 , 28(7) : 790 -794 . DOI: 10.3724/SP.J.1077.2013.13070

Abstract

A new kind of MLIMs are prepared, whose spacer is made from Al2O3 fiber mat, and silica aerogels is implanted on the surface of Al2O3?fiber through Sol-Gel process. In high vacuum (10-3 Pa), the effective thermal conductivity of the new MILMs could be reduced by 21.8%, at the same time, the weight could be reduced by 67.2%. Furthermore, this MLIMs shows good insulation performance in high temperature of 1200 K and low vacuum (100 Pa).

参考文献

[1] Araki Kuninari, Kamoto Daigorou, Matsuoka Shin-ichi. Optimization about multilayer laminated film and getter device materials of vacuum insulation panel for using at high temperature. Journal of Materials Processing Technology, 2009, 209(1): 271–282.

[2] Keller C W. Thermal Performance of Multilayer Insulations. NASA N 74-22 564.

[3] Schmidt M, Schwertfege F. Applications for silica aerogel products. Journal of Non-Crystalline Solids, 1998, 225: 364–368.

[4] Anderson Ann M, Wattley Caleb W, Carroll Mary K. Silica aerogels prepared via rapid supercritical extraction: effect of process. Journal of Non-Crystalline Solids, 2009, 355(2): 101–108.

[5] Wang Li-Jiu, Zhao Shan-Yu, Yang Mei. Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Materials Chemistry and Physics, 2009, 113(1): 485–490.

[6] Darjabcig Kamvan. Heat Transfer in High Temperature Fibrous Insulation. AIAA, 2002(3): 332.

[7] Spinnler Markus, Winter Edgar R F, Viskant Raymond. Studies on high-temperature multilayer thermal insulations. International Journal of Heat and Mass Transfer, 2004, 47(6/7): 1305–1312.

[8] Ohmori T. Thermal performance of multilayer insulation around a horizontal cylinder. Cryogenics, 2006, 45(12): 725–732.

[9] Li Peng, Cheng Huier. Thermal analysis and performance study for multilayer perforated insulation material used in space. Applied Thermal Engineering, 2006, 26(16): 2020–2026.

[10] Lei Yao, Xu Zhijun, Zhang Lizhong. Experimental study on thermal uniformity of optical transmitter and receiver on?near space. Experimental Thermal and Fluid Science,?2011, 35(7): 1463–1472.

[11] Chen J J, Yu W D. Structure Designing and Properties Investigation of Flexible Multilayer Thermal Insulation Materials. 86th Textile Institute World Conference Proceedings, 2008: 1456–1464.
文章导航

/