研究论文

球形铁基金属玻璃单分散粒子的制备及评价

  • 李 颖 ,
  • 董 伟 ,
  • 三浦彩子 ,
  • 谭 毅 ,
  • 川崎亮
展开
  • (1. 大连理工大学 材料科学与工程学院, 大连 116024; 2. 辽宁省太阳能光伏系统重点实验室, 大连 116024; 3. 日本东北大学大学院, 工学研究科, 材料加工系, 日本仙台 9808579)
李 颖(1986-), 女, 硕士研究生. E-mail: liying8687@163.com

收稿日期: 2011-09-15

  修回日期: 2012-01-13

  网络出版日期: 2012-07-09

基金资助

大连市科学技术基金(2010J21DW003)

Fabrication and Characterization of Mono-sized Spherical Fe-based Metallic Glass Micro-particles

  • LI Ying ,
  • DONG Wei ,
  • MIURA Ayako ,
  • TAN Yi ,
  • KAWASAKI Akira
Expand
  • (1. School of Material Science and Engineering, Dalian University of Technology, Dalian 116024, China; 2. Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024; 3. Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 9808579, Japan)
LI Ying. E-mail: liying8687@163.com

Received date: 2011-09-15

  Revised date: 2012-01-13

  Online published: 2012-07-09

Supported by

Dalian Science and Technology Foundation (2010J21DW003)

摘要

利用脉冲小孔法在He气氛下制备出了球形粒径可控的[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃单分散微粒子, 这些粒子具有粒径均匀和圆球度高等优良特点. 通过XRD、DSC以及TEM对所获得的粒子进行了检测分析, 结果表明随着粒径尺寸的减小, 微粒子的微观结构从混合相逐渐向全金属玻璃相转变, 制备的粒子均为全玻璃相, 临界尺寸小于645 μm. 通过冷却速率的计算, 得到全玻璃相微粒子的临界冷却速率为800~1100 K/s, 该速度与环境气氛的改变无关, 并且该计算值低于同成分的大块金属玻璃合金TTT曲线的测量值.

本文引用格式

李 颖 , 董 伟 , 三浦彩子 , 谭 毅 , 川崎亮 . 球形铁基金属玻璃单分散粒子的制备及评价[J]. 无机材料学报, 2012 , 27(8) : 849 -854 . DOI: 10.3724/SP.J.1077.2012.11582

Abstract

[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 metallic glass alloy particles with narrow size distribution and high sphericity were prepared in a Helium atmosphere by pulsated orifice ejection method (POEM). The analysis of these obtained particles was carried out by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and transmission electron microscope (TEM). The results show that the phase transitions of particles from the mixed phase consisting of the glassy phase and the crystalline phase to the fully glassy phase occur as the particle diameter is decreased. The particles obtained in the fully glassy phase have a diameter of less than 645 μm. The critical cooling rate for fully glassy phase is estimated to be in the range of 800-1100 K/s. No changes of the critical cooling rate occur in Ar or He atmosphere. Critical cooling rate measured in this method is definitely lower than that measured by time-temperature transformation diagram of bulk metallic alloy.

参考文献

[1] Afonso C R M, Bolfarini C, Botta Filho W J, et al. Spray forming of glass former Fe63Nb10Al4Si3B20 alloy. Mater. Sci. Eng. A, 2007, 449-451: 884-889.

[2] Inoue A, Shen B L, Chang C T. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater., 2004, 52(14): 4093-4099.

[3] Inoue A, Shen B L. Soft magnctic bulk glassy Fe-B-Si-Nb alloys with high saturation magnetization above 1.5 T. Mater. Trans., 2002, 43(4): 766-769.

[4] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48(1): 279-306.

[5] Pan J, Chen Q, Li N, et al. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment. J. Alloys Compd., 2008, 463(1/2): 246-249.

[6] Herlach D M. Non-equilibrium solidification of undercooled metallic melts. Key Engineering Materials,1993, 81-83: 83-94.

[7] Venkataraman S, Scudino S, Eckert J, et al. Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass. J. Mater. Res., 2006, 21(3): 597-607.

[8] Dong W, Masuda S, Takagi K, et al. The development of mono-sized micro silicon particles for spherical solar cells by pulsated orifice ejection method. Mater. Sci. Forum, 2007, 534-536: 149-152.

[9] Masuda S, Takagi T, Dong W, et al. Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method. J. Cryst. Growth, 2008, 310(11): 2915-2922.

[10] Miura A, Dong W, Fukue M, et al. Preparation of Fe-based monodisperse spherical particles with fully glassy phase. J. Alloys Compd., 2011, 509(18): 5581-5586.

[11] Huang X M, Uda S, Tanabe H, et al. In situ observations of crystal growth of spherical Si single crystals. J. Cryst. Growth, 2007, 307(2): 341-347.

[12] Paradis P F, Ishikawa T, Yoda S. Non-contact measurement of thermophysi-cal properties of niobium at high temperatures. J. Mater. Sci., 2001, 36(21): 5125-5130.

[13] Ranz W E, Marshall W R. Evaporation from drops. Chem. Eng. Prog., 1952, 48(3): 141-144.
文章导航

/