研究论文

ZnGeP2晶体近红外吸收特性的研究

展开
  • (哈尔滨工业大学 化工学院, 哈尔滨150001)

收稿日期: 2010-01-26

  修回日期: 2010-05-19

  网络出版日期: 2010-09-26

基金资助

国家自然科学基金(E50872023); 黑龙江省科技攻关项目(GC05A205)

Study on the Near-infrared Absorption Properties of ZnGeP2 Single Crystals

Expand
  • (School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China)

Received date: 2010-01-26

  Revised date: 2010-05-19

  Online published: 2010-09-26

Supported by

National Nature Science Foundation of China(E50872023); Key Project of Science and Technology of Helongjiang Province(GC05A205)

摘要

采用布里奇曼法生长了磷化锗锌晶体, 晶体毛坯尺寸达直径20mm×90mm, 选取晶体尾部、晶体中部、籽晶端三个部位厚度为4.0mm的抛光晶片作为测试样品. 从实验和理论上研究与分析了晶体的近红外吸收特性. 实验结果显示: 晶体透过率由尾部至近籽晶端逐渐增大, 表明晶体近红外吸收由尾部至近籽晶端逐渐减小, 这是由于晶体内缺陷密度发生了改变, 且晶体内本征点缺陷分布比例不均衡, 进而导致晶体的近红外吸收产生差异. 理论上计算了磷化锗锌晶体施主缺陷和受主缺陷的吸收光谱. 计算结果表明: 受主缺陷对磷化锗锌晶体吸收光谱产生的影响大于施主缺陷. 

本文引用格式

夏士兴, 杨春晖, 朱崇强, 马天慧, 王 猛, 雷作涛, 徐 斌 . ZnGeP2晶体近红外吸收特性的研究[J]. 无机材料学报, 2010 , 25(10) : 1029 -1033 . DOI: 10.3724/SP.J.1077.2010.01029

Abstract

Zinc germanium phosphide crystals about 20mm×90mm were grown by using Bridgman techniques. The three measured crystal sheets with thickness 4.0mm were obtained from the tail, middle and top of single crystal ingot. The infrared absorption properties were studied according to the experimental and theoretical data. The results show that the transmitted intensity gradually increased from top to bottom of ZGP crystals, which is caused by the inhomogeneous distribution of different kinds of intrinsic point defect. The absorption spectra of donor defects and acceptor defect  in ZGP crystals are calculated theoretically. It is found that the influence of acceptor defect  on absorption spectra is stronger than that of donor defect.

参考文献

[1] Hopkins F K. Nonlinear materials extend the range of high-power lasers. Laser Focus World. 1995, 31(7): 87-93. [2] 董春明, 王善朋, 陶绪堂. 中红外非线性光学晶体研究进展. 人工晶体学报, 2006, 35 (4): 785-789. [3] Lind M D, Grant R W. Structural dependence of birefringence in the chalcopyrite structure. refinement of the structural parameters of ZnGeP2 and ZnSiAs2. Journal of Chemical Physics, 1973, 58(1): 357-362. [4] Schunemann P G, Zawilski K T, Pollak T M. Horizontal gradient freeze growth of AgGaGeS4 and AgGaGe5Se12. Journal of Crystal Growth, 2006, 287(2): 248-251. [5] Zawilski Kevin T, Schunemann Peter G, Scott D Setzler, et al. Advances in Single Crystal ZnGeP2 Processing for High Energy Applications. IEEE Xplore, 2008, 1-2. [6] 王克强, 韩 隆, 王建军, 等. 3-5 μm 固体激光器. 红外与激光工程, 2006, 35: 169-173. [7] Yao Baoquan, Ju Youlun, Wang Yuezhu, et al. Performance evaluation of ZnGeP2 optical parametric oscillator pumped by a Q-switched Tm, Ho:GdVO4 laser. Chinese Optics Letters, 2008, 6(1): 68-70. [8] 王 平, 柴金华. 中红外磷锗锌光参量振荡器的参量对比与分析. 激光与红外, 2009, 2(39): 123-127. [9] Tsveybak I, Rudorman W, Wood G, et al. Native defect related optical properties of ZnGeP2. Applied Physics Letters, 1994, 65(22): 2759-2761. [10] Jiang X S, Miao M S, Lambrecht W R L. Theoretical study of the phosphorus vacancy in ZnGeP2. Physical Review B, 2006, 73(19): 193203-1-4. [11] Brudnyi V N, Voevodin V G, Grinyaev S N. Deep levels of intrinsic point defects and the nature of "anomalous" optical absorption in ZnGeP2. Physics of the Solid State. 2006, 48(11): 2069-2083. [12] Zawilski K T, Schunemann P G, Setzler S D, et al. Large aperture single crystal ZnGeP2 for high-energy applications. Journal of Crystal Growth, 2008, 310(7/8/9): 1891-1896. [13] Verozubova G A, Gribenyukov A I. Growth of ZnGeP2 crystals from melt. Crystallography Reports, 2008, 53(1): 158-163. [14] 吴海信, 倪友保, 耿 磊, 等. 红外非线性晶体ZnGeP2的生长及品质研究. 人工晶体学报, 2007, 36(3): 507-511. [15] Zhao Xin, Zhu Shifu, Zhao Beijun, et al. Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method. Journal of Crystal Growth, 2008, 311(1): 190-193. [16] Fiechter S, Castleberry R H, Angelov M, et al. Melt growth of ZnGeP2: homogeneity range and thermochemical properties. Materials Research Society Symposium Proceedings, 1997, 450: 315-320. [17] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations, and the CASTEP code. Journal of Physics: Condens. Matter, 2002, 14(11): 2717-2743. [18] Lind M D, Grant R W. Structural dependence of birefringence in the chalcopyrite structure. brefinement of the structural parameters of ZnGeP2 and ZnSiAs2. Journal of Chemistry Physics, 1973, 58(1): 357-362. [19] Halliburton L E, Edwards G J, Scripsick M P, et al. Electron- nuclear double resonance of the zinc vacancy in ZnGeP2. Applied Physics Letters, 1995, 66(20): 2670-2672. [20] Giles N C, Halliburton L E, Schunemann P G. Optical and magnetic resonance characterization of donors and acceptors in ZnGeP2. Proceedings of SPIE, 1995, 2379: 175-184. [21] Gehlhoff W, Azamat D, Hoffmann A, et al. Structure and energy level of native defects in as-grown and electron-irradiated zinc germanium diphosphide studied by EPR and photo-EPR. Journal of Physics and Chemistry of Solids, 2003, 64(9/10): 1923-1927. [22] Zapol P, Pandey R, Ohmer M, et al. Atomistic calculations of defects in ZnGeP2. Journal of Applied Physics, 1996, 79(2): 671-675. [23] Giles N C, Halliburton L E, Schunemann P G, et al. Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2. Applied Physics Letters, 1995, 66(14): 1758-1760. [24] Setzler S D, Giles N C, Halliburton L E, et al. Electron paramagnetic resonance of a cation antisite defect in ZnGeP2. Applied Physics Letters, 1999, 74(9): 1218-1220. [25] Kaufmann U, Schneider J, R-uber A. ESR detection of antisite lattice defects in GaP, CdSiP2 and ZnGeP2. Applied Physics Letters, 1976, 29(5): 312-313.
文章导航

/