不同预制体结构C/C复合材料轴向热力学性能分析
收稿日期: 2009-11-19
修回日期: 2010-04-07
网络出版日期: 2010-08-25
基金资助
国家自然科学基金(50832004)
Axial Thermodynamic Performance Analysis of the Different Preform C/C Composites
Received date: 2009-11-19
Revised date: 2010-04-07
Online published: 2010-08-25
主要对比了编织C/C复合材料和针刺C/C复合材料的轴向热力学性能. 编织C/C复合材料主要有径棒法、轴棒法、轴向穿刺三种, 针刺C/C复合材料主要有炭布叠层针刺、整体毡两种. 编织预制体密度较高, 平均可达到0.70 g/cm3以上, 针刺类整体毡密度在0.20 g/cm3左右, 炭布叠层预制体密度在0.45 g/cm3左右, 均低于编织预制体. 径棒法、轴棒法、轴向穿刺预制体轴向纤维含量≥19%, 针刺类预制体轴向纤维含量约为5%. C/C复合材料的轴向拉伸强度、热膨胀系数与预制体编织结构、轴向纤维含量有关, 编织类C/C复合材料轴向拉伸强度平均值≥40MPa, 针刺类C/C复合材料轴向拉伸强度在10MPa左右. 轴棒法、轴向穿刺、炭布叠层针刺、整体毡等四种C/C复合材料(RT~800℃)轴向热膨胀系数基本相当.
嵇阿琳, 李贺军, 崔 红, 程 文 . 不同预制体结构C/C复合材料轴向热力学性能分析[J]. 无机材料学报, 2010 , 25(9) : 994 -998 . DOI: 10.3724/SP.J.1077.2010.00994
Axial thermodynamic performance of braid carbon/carbon (C/C) composites and needle C/C composites is compared. Braid C/C composites comprises the radial rod preform composite, the axial rod preform composite and the fine woven punctured preform composite. Needle C/C composites consist of the whole felt preform composites and the carbon clothes/felt layer needling preform composites. The bulk density of the whole felt preform approximates 0.2g/cm3, and the carbon clothes/felt layer needling preform is about 0.45g/cm3. The density of needle preform is less than that of braid perform, which is up to 0.70g/cm3. Axial fiber content of braid preform is more than or equal to 19%, while that of needle preform is only 5%. The axial tensile strength and thermal expansion coefficient are related to the structure of preform and axial fiber content. The average axial tensile strength of braid C/C composites is ≥40MPa, and while the needle C/C composites is around 10MPa. The axial thermal expansion coefficient of the axial rod preform, the fine woven punctured preform, the whole felt preform and the carbon clothes/felt layer needle preform C/C composites is comparative in the range of RT -800℃.
Key words: C/C composites; perform; braid; needle; axial; tensile strength; thermal expansion coefficient
[1] 苏君明.高效高冲质比C/C喷管的应用与进展.新型炭材料, 1996, 11(3): 18-23.
[2] 苏君明.C/C复合材料喉衬的研究与发展.第18届炭·石墨材料学术会议论文集, 2000: 36.
[3] Aubard X, Cluzel C, Guitard L, et al. Modelling of the mechanical behaviour of 4D carbon/carbon composite materials. Composites science and technology, 1998, 58(5): 701-708.
[4] 罗瑞盈. 预制体结构对炭/炭复合材料力学性能影响. 炭素技术, 1997(2): 15-18.
[5] 黄玉东, 朱惠光, 孙文训, 等. 细编穿刺C/C复合材料不同层次界面特性研究.复合材料学报, 2000, 17(1): 56-59.
[6] 苏君明, 崔 红.新型针刺炭布C/C复合材料结构与性能.新型炭材料, 2000, 15(2): 11-15.
[7] Kim J, Shioya M, Kobayashi H, et al. Mechanical properties of woven laminates and felt composites using carbon fibers. Composites Science and Technology, 2004(64): 2221-2229.
[8] 杨彩云.炭纤维、炭纤维织物及炭布在复合材料中强度利用率研究.纤维复合材料, 1998(3): 46-50.
[9] Marc Montaudon.Arine V SRM Carbon-carbon Nozzle Throat: Development Result. AIAA-95-3016, 31th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit.San Diego, CA, 1995.
[10] Torsten Windhorst, Gordon Blount. Carbon-carbon composites: a summary of recent developments and applications. Materials & Design, 1997, 22(1): 11-15.
[11] Bradley L R, Bowen C R, McEnaney B, et al. Shear properties of a carbon/carbon composies with non-woven felt and continuous fiber reinforcement layers. Carbon, 2007(45): 2178-2187.
[12] 乔生儒, 编著.复合材料细观力学性能. 西安: 西北工业大学出版社, 1997: 45-60.
[13] Kuo Wen-Shyong, Ko Tse-Hao, Lo Tzu-Sen. Failure behavior of three-axis woven carbon/carbon composites under compressive and transverse shear loads. Composites Science and Technolpgy, 2002, 62(7/8): 989-999.
[14] 孔宪红, 黄玉东, 范洪涛, 等.细编穿刺C/C复合材料不同层次界面剪切强度的测试分析.复合材料学报, 2001, 18(2): 57-60.
[15] Delneste L. Improvements in Mechanical Analysis of Multi-directional Sepcarb Carbon-carbon Composites. AIAA SAE and ASME, Joint Propulsion Conference, 20th, Cincinnati, USA, 1984, AIAA84-1308.
[16] Savage. Carbon-carbon Composites. London:chapman&hall, 1993, 33: 145-171.
[17] Buckley J D, Edie D D. Carbon-carbon Materials and Composites, USA, New Jersey: Noyes Publication, 1993: 276-303.
/
〈 |
|
〉 |