纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响
收稿日期: 2009-12-11
修回日期: 2010-04-07
网络出版日期: 2010-08-25
基金资助
国家自然科学重点基金(50333070)
Effect of Spinning Process on the Oriented Structure and Thermal Conductivity of the Mesophase Pitch-based Graphite Fiber
Received date: 2009-12-11
Revised date: 2010-04-07
Online published: 2010-08-25
中间相沥青经熔融纺丝、不熔化、炭化石墨化制备了带状高导热石墨纤维. 鉴于纺丝工艺对中间相分子的轴向和截面取向度的重要影响, 研究了喷丝板结构和纺丝温度对中间相沥青基石墨纤维(MPGF)的取向结构和传导性能的影响. 结果表明: 对矩形截面喷丝的微孔, 在最佳的纺丝温度下, 截面长宽比越大,初生纤维内分子的取向度越高, MPGF的传导性越好. 当长宽比和纺丝温度分别为9:1和305℃时, MPGF的取向度较高(97.8%), 热导率达到894 W/(m·K); 长宽比继续增大时, 更高的剪切作用致使纤维内应力较大, 纺丝稳定性变差.
关键词: 中间相沥青基石墨纤维; 取向结构; 热导率
马兆昆, 刘 朗, 刘 杰 . 纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响[J]. 无机材料学报, 2010 , 25(9) : 989 -993 . DOI: 10.3724/SP.J.1077.2010.00989
High thermal conductive mesophase pitch-based graphite fiber was prepared through melt spinning, stabilization, carbonization and graphitization. It was proved that the spinning process was crucial for the degree of preferred orientation of mesophase molecular along the fiber axis. Effect of spinneret structure with rectangular section and spinning temperature on the preferred orientation degree and conductivity properties of MPGF were investigated. The experimental results demonstrate that larger aspect ratio of spinneret section facilitate higher preferred orientation degree of molecular and conductivity. At 9:1 of the aspect ratio and 305℃ of spinning temperature, the orientation degree of graphite crystal with respect to fiber axis and thermal conductivity of MPGF reached 97.8% and 894 W/(m·K), respectively. Furthermore, the mesophase pitch still?exhibite good spinnability. With increasing the aspect ratio of rectangular section of spinneret, larger shear action leads to higher internal stress of fiber, and resultes in poor spinning stability.
[1] Snead L L, Balden M, Causey R A, et al. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application. J. Nucl. Mater., 2002, 307-311: 1200-1204.
[2] 李崇俊, 马伯信, 金志浩. 炭/炭复合材料的新进展. 材料科学与工程, 2000, 18(3): 135-138.
[3] Enweani B N, Davis J, Haasz A A. Thermal diffusivity/ conductivity of doped graphite. J. Nucl. Mater., 1995, 224(3): 245-253.
[4] Wang Moran, Kang Qinjun, Pan Ning. Thermal conductivity enhancement of carbon fiber composites. Applied Thermal Engineering, 2009, 2(2/3): 418-421.
[5] Li Tong-Qi, Xu Zheng-Hui, Hu Zi-Jun, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system. Carbon, 2010, 48(3): 924-925.
[6] 马兆昆, 史景利, 刘 朗, 等(MA Zhao-Kun, et al). 中间相沥青纤维制备高导热炭材料的研究. 无机材料学报(Journal of Inorganic Materials), 2006, 21(5): 1167-1172.
[7] Edie D D. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362.
[8] Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon, 1996, 34(8): 941-956.
[9] Edie D D, Fain C C, Robinson K E, et al. Ribbon-shape carbon fibers for thermal management. Carbon, 1993, 31(6): 941-949.
[10] Mchugh J J, Edie D D. The orientation of mesophase pitch during fully developed channel flow. Carbon, 1996, 34(11): 1315-1322.
[11] Zhang X, Fujiwara S, Fujii M. Measurement of thermal conductivity and electrical resistivity of a single carbon fiber. Inter. J. Thermophys, 2000, 21(4): 965-980.
[12] 王浩静, 王红飞, 李东风, 等. 石墨化温度对炭纤维微观结构及其力学性能的影响. 新型炭材料, 2005, 20(2): 157-163.
[13] Qiu H, Song Y, Liu L, et al. Thermal conductivity and microstructure of Ti-doped graphite. Carbon, 2003, 41(5): 973-978.
/
〈 |
|
〉 |