研究论文

La1-xCaxMnO3低温高磁场下的电脉冲诱导电阻转变效应

展开
  • (上海第二工业大学 城市建设与环境工程学院, 上海201209)

收稿日期: 2009-12-01

  修回日期: 2010-02-24

  网络出版日期: 2010-08-25

基金资助

上海市优秀青年基金(EGD08012); 上海高校特聘教授“东方学者”岗位计划

Electric Pulse Induced Resistive Switching of La1-xCaxMnO3 at High Magnetic Field and Low Temperature

Expand
  • (School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China)

Received date: 2009-12-01

  Revised date: 2010-02-24

  Online published: 2010-08-25

摘要

对La1-xCaxMnO3(x=0.3, 0.5)多晶材料的巨磁电阻效应及低温高磁场下的电脉冲诱导电阻可逆变化(EPIR)效应进行了研究, 并对两者之间的区别进行了分析. 实验结果表明, La1-xCaxMnO3(x=0.3和0.5)多晶材料在低温高磁场下仍具有EPIR效应, 电阻在相同电脉冲下的变化率不随温度和施加磁场与否发生变化, 表现出不同于巨磁电阻效应的变化规律. 结合之前的研究结果, 发现巨磁电阻效应是由于磁场造成磁矩的有序并继而造成电子的退局域化引起的, 而EPIR效应则是由于电脉冲诱导氧离子迁移, 导致载流子浓度变化引起的.

本文引用格式

吴子华, 谢华清 . La1-xCaxMnO3低温高磁场下的电脉冲诱导电阻转变效应[J]. 无机材料学报, 2010 , 25(9) : 961 -965 . DOI: 10.3724/SP.J.1077.2010.00961

Abstract

The colossal magnetoresistive and electric pulse induced resistive switching properties of La1-xCaxMnO3 (x=0.3, 0.5) polycrystalline at high magnetic field and low temperature were studied. The difference of colossal magnetoresistive and electric pulse induced resistive switching was analyzed. The EPIR effect of La1-xCaxMnO3 (LCMO)(x=0.3, 0.5) polycrystalline also exist at high magnetic field and low temperature. The ratio of high resistance state and low resistance state has no obviously change with varying temperature and magnetic field. The CMR property comes from double exchange and Jahn-Teller effect. Increasing the magnetization by applying an external field would increase the charge mobility of ferromagnetic phase and then decrease the resistance via the double exchange mechanism. Ions motion driven by electric pulses is presented for explaining the resistance switching. The motion of oxygen would change the hole density of local regions. The change of hole density would still exist at low temperature and modulate the low temperature magnetic configuration of LCMO.

参考文献

[1] Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science, 1994, 264(5157): 413-415.
[2] Elbio D, Takashi H, Adriana M. Colossal magneto resistant materials: the key role of phase separation. Physics Reports, 2001, 344(1/2/3): 1-153.
[3] Adriana M, Seiji Y, Elbio D. Phase separation scenario for manganese oxides and related materials. Science, 1999, 283(5410): 2034-2040.
[4] Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states in magnetoresistive manganites. Nature, 1997, 388(6637): 50-52.
[5] Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett., 2000, 76(19): 2749-2751.
[6] Dong R, Wang Q, Chen L D, et al. Retention behavior of the electric- pulse-induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwiches. Appl. Phys. Lett., 2005, 86(17): 172107-1-3.
[7] Aoyama K, Waku K, Asanuma A, et al. Electric-pulse-induced reflectance change in the thin film of perovskite manganite. Appl. Phys. Lett., 2004, 85(7): 1208-1211.
[8] Odagawa A, Sato H, Inoue I H, et al. Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature. Phys. Rev. B,  2004, 70(22): 224403-1-4.
[9] 王 群, 董 睿, 陈立东(Wang Qun, et al). 用化学溶液沉积方法制备Pr0.7Ca0.3MnO3薄膜. 无机材料学报(Journal of Inorganic Materials), 2004, 19(5): 1087-1092.
[10] Nian Y B, Strozier J, Wu N J, et al. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett., 2007, 98(14): 146403-1-4.
[11] Millis A J, Littlewood P B, Shraiman B I. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys. Rev. Lett., 1995, 74(25): 5144-5147.
[12] Krzysztof S, Wolfgang S, Gustav B, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials, 2006, 5(12): 312-320.
[13] Chen X, Wu N J, Strozier J, et al. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett., 2006, 89(6): 063507-1-3.
[14] Watanabe Y, Bednorz J G, Bietsch A, et al. Current-driven insulator– conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett., 2001, 78(23): 3738-3740.
[15] Tulina N A, Sirotkin V V. Electron instability in doped manganites based heterojunctions. Physica C, 2004, 400(3): 105-110.
[16] Baikalov A, Wang Y Q, Lorenz B, et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett., 2003, 83(5): 957-959.

文章导航

/