研究论文

La掺杂TiO2膜的制备及其对甲苯的去除性能

展开
  • (东北林业大学 生物质材料教育部重点实验室, 哈尔滨 150040)

收稿日期: 2009-12-21

  修回日期: 2010-04-06

  网络出版日期: 2010-08-25

基金资助

黑龙江省杰出青年基金(JC200801); 国家自然科学基金(30771692); 黑龙江省科技攻关项目(GB06B501-3)

Preparation of Lanthanum-doped TiO2 Film and Its Application for Gaseous Toluene Removal

Expand
  • (Key Laboratory of Biological Materials of Ministry of Education, Northeast Forestry University, Harbin 150040, China)

Received date: 2009-12-21

  Revised date: 2010-04-06

  Online published: 2010-08-25

摘要

以钛酸四丁酯和硝酸镧为原料, 采用溶胶-凝胶法, 制备出La掺杂TiO2膜. 采用X射线光电子能谱(XPS)、傅立叶红外(FTIR)、X射线衍射(XRD)、低温氮物理吸附、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(DRS)对光催化剂的晶相结构、光谱特征和表面结构进行表征. 以气相甲苯为模型物, 在自制光催化反应器中考察了催化剂在可见光下对气相有机污染物的去除性能. 结果表明, La掺杂可诱发催化剂的可见光催化活性, 500℃热处理的2.8%mol La掺杂TiO2膜在60min内即可完全去除6110.18mg/m3的气相甲苯; 掺入的La主要以La2O3的形式存在, 同时有一部分形成Ti-O-La键; La掺杂可抑制TiO2锐钛矿相向金红石相转变、提高相转变温度、减小晶粒尺寸及增大催化剂比表面积; La/TiO2薄膜表面光滑、致密, La的引入能有效抑制TiO2膜气孔的产生; La掺杂可提高TiO2在可见光区的吸收, 使催化剂吸收边向长波移动; La的f轨道的电子跃迁和TiO2晶格扭曲是催化剂可见光活性提高的重要原因.

关键词: 可见光; La掺杂; TiO2; 薄膜; 甲苯

本文引用格式

孙 剑, 刘守新 . La掺杂TiO2膜的制备及其对甲苯的去除性能[J]. 无机材料学报, 2010 , 25(9) : 928 -934 . DOI: 10.3724/SP.J.1077.2010.00928

Abstract

Visible light response lanthanum-doped TiO2 film was prepared by Sol–Gel method using Ti(OBu)4 and La(NO)3·6H2O as raw materials. XPS, FTIR, XRD, N2(77K) adsorption, SEM and DRS were used for catalyst characterization. Gaseous toluene removal was used for photocatalytic activity test. The results show that La dopant can induce visible light activity. The sample of 2.8-La/TiO2-500 exhibites the highest activity, which can remove toluene of initial concentration 6110.18mg/m3 completely within 60min. La3+ disperses onto TiO2 as the form of La2O3 and partly as the form of Ti-O-La bond. La dopant can inhibit phase transformation, enhance phase transformation temperature and is also beneficial to gain smaller particle size and large surface area of TiO2. Compared with pure TiO2 film, La dopant can also inhibit the generation of air-pores and the surface of La/TiO2 film is more dense and smooth. Electrons transfer of f level of La and the destortion of TiO2 lattice is the main reason for the enhancement of visible-light activity.

参考文献

[1] 孙 剑, 李晓辉, 刘守新. 吸附—光催化联用去除室内VOCs研究进展. 化学进展, 2009, 21(10): 2067-2076.
[2] Jutta B, Erich J, Türkan K, et al. Performance of two different types of passive samplers for the GC/ECD-FID determination of environmental VOC levels in air. Fresen. J. Anal. Chem., 1999, 363(4): 399-403.
[3] Cornejo J J, Munoz F G, Ma C Y, et al. Studies on the decontemination of air by plant. Ecotoxicology, 1999, 8(4): 312-320.
[4] Jirapat A, Puangrat K, Supapan S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials, 2009, 168(1): 253-261.
[5] 李 辉, 王金淑, 李洪义, 等(LI Hui, et al). 氮硫掺杂介孔TiO2薄膜结构及其光催化性能. 无机材料学报(Journal of Inorganic Materials), 2009, 24(5): 909-914.
[6] Colón G, Hidalgo M C, Macías M, et al. Enhancement of TiO2/C photocatalytic activity by sulfate promotion. Applied Catalysis A: General, 2004, 259(2): 235-243.
[7] Xie Y, Zhao X J, Li Y Z. CTAB-assisted synthesis of mesoporous F–N-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity. Journal of Solid State Chemistry, 2008, 181(8): 1936-1942.
[8] 陈其凤, 姜 东, 徐 耀, 等(CHEN Qi-Feng, et al). 溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能. 物理化学学报(Acta Phys-Chim. Sin.), 2009, 25(4): 617-623.
[9] Chan Chih-Chieh, Chang Chung-Chieh, Hsu Wen-Chia. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal, 2009, 152(2/3): 492-497.
[10] 刘守新, 陈孝云, 李晓辉(LIU Shou-Xin , et al). N掺杂对TiO2形态结构及光催化活性的影响. 无机化学学报(Chinese J. Inorg. Chem.), 2008, 24(2): 253-259.
[11] Jing L Q, Sun X J, Xin B F, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photo-
catalytic activity. J. Solid State Chem., 2004, 177(10): 3375-3382.
[12] Wu X H, Ding X B, Qin W, et al. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. J. Hazard. Mater. B, 2006, 137(1): 192-197.
[13] Yuan Sh, Sheng Q R, Zhang J L, et al. Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater., 2005, 79(1/2/3): 93-99.
[14] Atribak I, Such-Basanez I, Bueno-Lopez A, et al. Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catal. Commun., 2007, 8(3): 478-482.
[15] Masashi I, Li J G, Norio K. Phase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutions. Thin Solid Films, 2008, 516(19): 6640-6644.
[16] Setiawati E, Kawano K. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2. Journal of Alloys and Compounds, 2008, 451(1/2): 293-296.
[17] Hwang D W, Lee J S, Li W, et al. Electronic band structure and photocatalytic activity of Ln2Ti2O7 (Ln = La, Pr, Nd). J. Phys. Chem. B, 2003,107(21): 4963-4970.
[18] Zhang Y H, Zhang H S, Xu Y X, et al. Europium doped nanocrystal-
line titanium dioxide: preparation,phase transformation and photo-
catalytic properties. J. Mater. Chem., 2003, 13(1): 2261-2265.
[19] Liu H, Li X Z. An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy. J. Phys. Chem. B, 2003, 107(34): 8988-8996.
[20] Wang C, Zhang X H, Liu H, et al. Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres. J. Hazard. Mater., 2009, 163(2/3): 1101-1106.
[21] Li X Z, Liu H. Photocatalytic oxidation using a new catalyst-TiO2 microsphere for water and wastewater treatment. Environ. Sci. Technol., 2003, 37(17): 3989-3994.
[22] Kamat P V. photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B, 2002, 106(32): 7729-7744.
[23] Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol., 2003, 37(1): 147-152.
[24] Fang J, Bi X, Si D, et al. Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci., 2007, 253(22): 8952-8961.
[25] 刘正峰. TiO2/ACF复合材料的溶胶-凝胶法制备及其对苯的去除性能研究. 哈尔滨: 东北林业大学硕士论文, 2008.
[26] 李晓辉, 刘守新(LI Xiao-Hui, et al). N、F共掺杂TiO2可见光响应光催化剂的酸催化水解法制备及表征. 物理化学学报(Acta Phys-Chim. Sin.), 2008, 24(11): 2019-2024.
[27] Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-doping in titanium dioxide by ion implantation technique. Nucl. Instr. Meth. Phys. Res. B, 2003, 206(1): 254-258.
[28] Suzuki S, Ishii T, Sagawa T. X-Ray photoemission spectra of 4d and 3d electrons in lanthanum- and cerium-halides. J. Phys. Soc. Jpn., 1974, 37(5): 1334-1340.
[29] Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typi-cal indoor air level. Appl. Catal. B: Environ., 2003, 44(3): 191-205.
[30] Soler-Illia G, Louis A, Sanchez C. Synthesis and characterization of mesostruetured titania-based materials through evaporation-induced self-assembly. Chem. Mater., 2002, 14(2): 750-759.
[31] 尹荔松, 谭 敏, 陈永平, 等. La掺杂对纳米TiO2薄膜晶体结构和光催化性能的影响. 中南大学学报, 2008, 39(4): 665-671.
[32] 方舒玫, 欧 延, 林敬东, 等. La2O3掺杂低温合成介孔锐钛矿相二氧化钛. 中国稀土学报, 2006(S2): 32-36.
[33] Ebitani K, Hirano Y, Morikawa A. Rare-earth ions as heterogene-ous photocatalysts for the decomposition of dinitrogen monoxide. J. Catal., 1995, 157(1): 262-265.
[34] Li F, Li X, Hou M. Photocatalytic degradation of 2-mercap-tobenzothiazole in aqueous La3+–TiO2 suspension for odor control. Appl. Catal. B: Environ., 2004, 48(3): 185-194.

文章导航

/