N, Fe共掺杂TiO2纳米材料的固相合成及其对喹啉的可见光降解
收稿日期: 2009-12-03
修回日期: 2010-03-10
网络出版日期: 2010-08-25
基金资助
广西区教育厅研究生科研创新项目(1059330901009); 贵州省科学技术基金(黔科合丁字[2010]2006); 凯里学院自然科学专项基金(PG200902)
Synthesis of N, Fe Co-doped TiO2 Nanomaterials via Solid State Reaction and Their Photodegradation of Quinoline Irradiated under Visible Light
Received date: 2009-12-03
Revised date: 2010-03-10
Online published: 2010-08-25
采用固相反应法分别合成了铁掺杂二氧化钛(Fe-TiO2)及氮和铁共掺杂二氧化钛(N-Fe-TiO2)纳米材料. 并对材料进行了XRD、SEM、UV-Vis、XPS、AAS及全自动元素分析等技术的物相织构及元素组成表征, 同时研究了催化剂对喹啉的可见光降解性能. 结果表明, 在球形的N-Fe-TiO2纳米材料中, N以阴离子(N3-)进入二氧化钛晶格, Fe3+以同晶取代方式占据TiO2晶格中Ti的位置, 紫外-可见漫反射吸收光谱红移到600nm. N/Fe投料比的增大有助于N-Fe-TiO2催化剂晶型的转化. 在25℃、pH=6.5下, 所制得的光催化材料对喹啉的可见光降解行为均具有较高的光催化活性, 并服从一级反应动力学规律, 而纯TiO2对喹啉不降解. N-Fe-TiO2 (n(N2H4.H2O):n(FeCl3.6H2O)=1:9)催化剂对喹啉的可见光降解速率常数比Fe-TiO2大.
刘少友, 唐文华, 冯庆革, 李举志, 孙建华 . N, Fe共掺杂TiO2纳米材料的固相合成及其对喹啉的可见光降解[J]. 无机材料学报, 2010 , 25(9) : 921 -927 . DOI: 10.3724/SP.J.1077.2010.00921
Fe-doped TiO2 (Fe-TiO2) and N, Fe co-doped TiO2 (N-Fe-TiO2) nanomaterials were synthesized by solid-state reaction, respectively. The textural properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet visible light spectroscope (UV-Vis), X-ray photoelectron spectroscope (XPS). The components of the samples were determined by atomic absorption spectrum (AAS) and automatic elemental analyzer. Moreover, the photodegradation properties of quinoline irradiated under visible light on the materials were investigated. The results show that N atoms as N3- states are incorporated into the lattice of TiO2, and Fe3+ ions occupy the sites of Ti4+ by isomorphous replacement in the spheric shape N-Fe-TiO2 nanomaterials. The UV-Vis absorption onset of the N-Fe-TiO2 samples extends well into the visible region at 600 nm. Furthermore, an increase of the initial ratio of N2H4·H2O to FeCl3·6H2O enhances the phase transformation of N-Fe-TiO2 catalysts. At 25℃, pH=6.5, the rule of pseudo-first-order reaction and excellent photocatalytic activity on the N-Fe-TiO2 catalysts are found in the process of photodegradation of quinoline. However, quinoline can not be degradated by pure TiO2 under visible light irradiation. The reaction rate constant of N-Fe-TiO2 (n(N2H4.H2O): n(FeCl3.6H2O)=1:9) catalyst is higher than that of pure TiO2 powder.
[1] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
[2] 杨 波, 严治国, 钟文安. 铁离子掺杂TiO2薄膜光催化降解无水肼废水的研究. 环境保护科学, 2009, 35(1): 33-35.
[3] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
[4] 刘守新, 陈孝云, 李晓辉(LIU Shou-Xin, et al). N掺杂对TiO2形态结构及光催化活性的影响. 无机化学学报(Chinese J. Inorg. Chem.), 2008, 24(2): 253-259.
[5] Zhang X, Liu Q. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Appl. Surf. Sci., 2008, 254(15): 4780-4785.
[6] 吕 媛, 倪伶俐, 杨 平, 等. (LV Yuan, et al )铬和硫共掺杂二氧化钛催化剂的制备及其可见光催化性能.催化学报(Chinese J. Catal.), 2007, 28(11): 987-992.
[7] 李 辉, 王金淑, 李洪义, 等(LI Hui, et al). 氮硫掺杂介孔TiO2薄膜结构及其光催化性能. 无机材料学报(Journal of Inorganic Materials), 2009, 24(5):-909-914.
[8] Peng T, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B, 2005, 109(11): 4947-4952.
[9] Zhu S N, Liu D Q, Fan L, et al. Degradation of quinoline by rhodococcus sp.QL2 isolated from activated sludge. J. Hazardous Mater., 2008, 160(2/3): 289-294.
[10] Cui M C, Chen F Z, Fu J M, et al. Microbial metabolism of quinoline by comamonas sp. World J. Micro-biol. Biotechnol., 2004, 20 (6): 539-543.
[11] Wang J L, Quan X C, Han L P, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res., 2002, 36(9): 2288-2296.
[12] Alexei N, John K. Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated processes. J. Photochem. Photobio. A: Chemistry, 1997, 110(2): 149-157.
[13] 李卫华, 乔学斌, 高恩勤, 等(LI Wei-Hua, et al). 3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究. 高等学校化学学报(Chem. J. Chinese. U.), 2001, 21(10): 1534-1538.
[14] Kuroda Y, Mori T, Yagi K, et al. Preparation of visible-light- responsive TiO2-xNx photocatalyst by a Sol-Gel method: analysis of the active center on TiO2 that reacts with NH3. Langmuir, 2005, 21(17): 8026-8034.
[15] 钱逸泰. 结晶化学导论, 2版. 合肥: 中国科学技术大学出版社, 1999: 234-239.
[16] 刘守新, 陈孝云, 陈 曦(LIU Shou-Xin, et al). 酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂. 催化学报(Chinese J. Catal.), 2006, 27(8): 697-702.
[17] 刘 芬, 陈 萦. 含铁化合物的Fe2p和Fe3s电子能谱研究. 分析测试技术与仪器, 2001, 7(3): 166-169.
[18] Saha N C, Tomkins H G. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J. Appl. Phys. 1992, 72(7): 3072-3079.
[19] Shinn N D, Tsang K L. Strain-induced surface reactivity: low temperature Cr/W (110) nitridation. J. Vac. Sci. Technol. A, 1991, 9(5): 1558-1562.
[20] Gole James L, Stout John D, Burda Clemens, et al. Highly efficient formation of visible light tunable TiO2-xNx phtocatalysts and their transformation at the nanoscale. J. Phys. Chem. B, 2004, 108(4): 1230-1240.
[21] Gy-rgy E, Pérez del Pino A, Serra P, et al. Surface nitridation of titanium by pulsed Nd: YAG laser irradiation. Appl. Surf. Sci., 2002, 186(1/4): 130-134.
[22] Gy-rgy E, Pérez del Pino A, Serra P, et al. Depth profiling characterisation of the surface layer obtained by pulsed Nd: YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol., 2003, 173(2/3): 265-270.
[23] Lu F H, Feng S P, Chen H Y, et al. The degradation of TiN films on Cu substrates at high temperature under controlled atmosphere. Thin Solid Films, 2000, 375(1/2): 123-127.
[24] Cong Y, Zhang J L, Chen F, et al. Synthesis and characterization of nitrogen doped TiO2 nanophoto-catalyst with high visible light activity. J. Phys. Chem. C, 2007, 111(19): 6976-6982.
[25] 黄东升, 曾人杰, 陈朝凤, 等(HUANG Dong-Sheng, et al). 铁氮共掺杂二氧化钛薄膜的亲水性能. 物理化学学报(Acta Phys- Chim. Sin.), 2007, 23(7): 1037-1041.
[26] Kim D H, Hong H S, Kim S J, et al. Photocatalytic behaviors and structural characterization of nanocry stalline Fe-doped TiO2 synthesized by mechanical alloying. J. Alloys Compd., 2004, 375(1/2): 259-264.
[27] Dvoranová D, Brezová V, Mazúr M, et al. Investigations of metal-doped titanium dioxide photo catalysts. Appl. Catal. B: Environmental, 2002, 37(2): 91-105.
[28] 刘昭麟, 崔作林, 张 志. Cr3+掺杂纳米TiO2结构相变及光谱特征. 功能材料, 2005, 36(9): 1404-1408.
[29] Damir A, Wang S F, Chen X D, et al. Excited state localization and delocalization of internal charge Transfer in branched push-pull chromophores studied by single-molecule spectroscopy. J. Am. Chem. Soc., 2009, 131(16): 5742-5743.
[30] Antonelli D M, Ying Y J. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2014-2017.
[31] Rusu C N, Yates J T. Defect sites on TiO2 (110) detection by O2 photodesorption. Langmuir, 1997, 13(16): 4311-4316.
[32] Hurum D C, Agrios A G, Gray K A, et al. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 2003, 107(19): 4545-4549.
/
〈 | 〉 |