综述

高频大功率金刚石薄膜场效应管的研究进展

展开
  • (北京科技大学 材料科学与工程学院, 北京100083)

收稿日期: 2010-02-15

  修回日期: 2010-04-12

  网络出版日期: 2010-08-25

Progress of High Frequency and High Output Power FET

Expand
  • (School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Received date: 2010-02-15

  Revised date: 2010-04-12

  Online published: 2010-08-25

摘要

随着CVD人工合成金刚石薄膜质量的不断提高, 其优异的电学性能在高频、大功率领域特别是场效应管中的应用受到了极大地关注. 制作金刚石薄膜场效应管, 电子级质量的薄膜、形成良好的接触以及半导体的形成是其关键技术. 以此为基础, 为达到其在高频大功率下使用的目的, 减小栅长和各种寄生参数以及提高耐压和散热能力成为决定其性能优劣的关键因素. 本文针对金刚石薄膜场效应管制作的关键技术的突破、H端基表面导电机制、目前高频大功率场效应管的水平以及出现的一些相关在研热点进行了综述, 展望了其巨大的优越性和广阔的应用前景.

本文引用格式

刘金龙, 李成明, 陈良贤, 黑立富, 吕反修 . 高频大功率金刚石薄膜场效应管的研究进展[J]. 无机材料学报, 2010 , 25(9) : 897 -905 . DOI: 10.3724/SP.J.1077.2010.00897

Abstract

Diamond films have been paid much attention in high frequency and high output power field, especially in field effect transistors (FET) with its outstanding electrical properties in the last two decades. For optimum electronics performance, quality of electronic films, good contacts and forming semiconductors are key techniques to make FETs. How to reduce gate length and various parasitic parameters and improve withstand voltage and heat-sinking capability determines whether FETs are of high-performance. The breakouts of key techniques, research progress and related hot spots of diamond films for high frequency and high output power FETs are reviewed. Mechanisms proposed to explain electrical conductivity of H-terminated diamonds are also presented.

参考文献

[1]Kasu M, Ueda K, Yamauchi Y. Diamond-based RF power transistors fundamentals and applications.Diamond and Related Materials,2007, 16(4-7):1010-1015
[2]李建国, 丰 杰, 梅 军. 超纳米金刚石薄膜及其在MEMS上的应用研究进展. 材料导报, 2008, 22(7): 1-4.
[3]Chaniotakis N, Sofikiti N. Novel semiconductor materials for the development of chemical sensors and biosensors: a reiew.Analytica Chimica Acta,2008, 615(1):1-9
[4]Tallaire A, Achard J, Silva F, et al. Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters.Diamond and Related Materials,2005, 14(3-7):249-254
[5]Tang C J, Pereira S M S, Fernandes A J S, et al. Synthesis and structural characterization of highly <100>-oriented {100}-faceted nanocrystalline diamond films by microwave plasma chemical vapor deposition.Journal of Crystal Growth,2009, 311(8):2258-2264
[6]Bauer T, Schreck M, Sternschulte H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates.Diamond and Related Materials,2005, 14(3-7):266-271
[7]Evan D A, Roberts O R, Williams G T, et al. Diamond–metal contacts interface barriers and real-time characterization. Journal of Physics Condensed Matter, 2009, 21(36): 1-12.
[8]Evans D A, Roberts O R, Vearey-Roberts A R. Direct observation of Schottky to Ohmic transition in Al-diamond contacts using real-time photoelectron spectroscopy.Applied Physics Letters,2007, 91(13):132114-1
[9]Wade M, Muret P, Omnès F, et al. Technology and electrical properties of ohmic contacts and Schottky diodes on homoepitaxial layers grown on (100) diamond surfaces.Diamond and Related Materials,2006, 15(4-8):614-617
[10]Kato H, Watanabe H, Yamasaki S, et al. N-type doping on (001)-oriented diamond.Diamond and Related Materials,2006, 15(4-8):548-553
[11]Schwitters M, Dixon M P, Tajani A, et al. Diamond-MESFETs- Synthesis and Integration. The 2nd European Radar Conference, Paris, 2005.
[12]Aleksov A, Kubovic M, Kaeb N, et al. Diamond field effect transistors-concepts and challenges.Diamond and Related Materials,2003, 12(3-7):391-398
[13]El-Hajj H, Denisenko A, Bergmaier A, et al. Characteristics of boron δ-doped diamond for electronic applications.Diamond and Related Materials,2008, 17(4/5):409-414
[14]El-Hajj H, Denisenko A, Kaiser A, et al. Diamond MISFET based on boron delta-doped channel.Diamond and Related Materials,2008, 17(7-10):1259-1263
[15]Landstrass M I, Ravi K V. Resistivity of chemical vapor deposited diamond films.Applied Physics Letter,1989, 55(10):975-977
[16]Nebel C E, Ertl F, Sauerer C, et al. Low temperature properties of the p-type surface conductivity of diamond.Diamond and Related Materials,2002, 11(3-6):351-354
[17]Nebel C E, Rezek B, Zrenner A, et al. Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond.Diamond and Related Materials,2004, 13(11/12):2031-2036
[18]Kubovic A, Denisenko A, Ebert W. Electronic surface barrier characteristics of H-terminated and surface conductive diamond.Diamond and Related Materials,2004, 13(4-8):755-760
[19]Kasu M, Ueda K, Yamauchi Y. Gate capacitance-voltage characteristics of submicron-long-gate diamond field-effect transistors with hydrogen surface termination.Applied Physics Letters,2007, 90(4):043509-1
[20]Kasu M, Ueda K, Kageshima H. Gate interfacial layer in hydrogen- terminated diamond field-effect transistors.Diamond and Related Materials,2008, 17(4/5):741-744
[21]Kubovic M, Kasu M, Yamauchi Y. Structural and electrical properties of H-terminated diamond field-effect transistor.Diamond and Related Materials,2009, 18(5-8):796-799
[22]Kohn E, Adamschik M, Schmid P, et al. Prospects of diamond devices. J. Phys. D: Appl. Phys., 2001, 34(16): R77-1-10.
[23]Denisenko A, Kohn E. Diamond power devices: concepts and limits.Diamond and Related Materials,2005, 14(3-7):491-498
[24]Miyata K, Nishemura K, Kobashi K. Device simulation of submicrometer gate p+-i-p+ diamond transistors.IEEE Trans. Electron Devices,1995, 42(11):2010-2014
[25]Kawakami N, Yokota Y, Tachibana T, et al. Fabrication of a submicron source-drain gap for p-i-p field effect transistors using epitaxial diamond layers.Diamond and Related Materials,2004, 13(11/12):1939-1943
[26]Kawakami N, Yokota Y, Hayashi K, et al. Device operation of p-i-p type diamond metal-insulator-semiconductor field effect transistors with submicrometer channel. Diamond and Related Materials, 2005, 14(3-7): 509-513.
[27]Umezawa H, Taniuchi H, Arima T. Potential applications of surface channel diamond field-effect transistors.Diamon

文章导航

/