研究论文

WO3含量对Tm3+掺杂TeO2-WO3-La2O3玻璃热学性能及光谱性质的影响

  • 李科峰 ,
  • 汪国年 ,
  • 胡丽丽 ,
  • 张军杰 ,
  • 胡俊江
展开
  • 1. 中国科学院 上海光学精密机械研究所, 中国科学院强激光材料重点实验室, 上海 201800; 2. 中国科
    学院 研究生院, 北京 100049

收稿日期: 2009-07-02

  修回日期: 2009-11-04

  网络出版日期: 2010-04-27

Effects of WO3 Contents on the Thermal and Spectroscopic Properties of Tm3+-doped TeO2-WO3-La2O3Glasses

  • LI Ke-Feng ,
  • WANG Guo-Nian ,
  • HU Li-Li ,
  • ZHANG Jun-Jie ,
  • HU Jun-Jiang
Expand
  • 1. Key Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2009-07-02

  Revised date: 2009-11-04

  Online published: 2010-04-27

摘要

研究了(90-x)TeO2-xWO3-9La2O3-1Tm2O3(x=10、20、30(mol%))玻璃(以下简称TWL玻璃)的热学性能和光谱性质. 研究发现WO3的增加可以提高TWL玻璃的热稳定性, 降低玻璃的热膨胀系数. WO3含量为30mol%时, 玻璃化转变温度Tg达457℃, DTA曲线上无析晶开始温度Tx, 且热膨胀系数降为1.224×10-5/℃(30~300℃). 玻璃的最大声子能量随WO3的增加而略微增大. 用J-O理论计算了Tm3+离子在TWL玻璃中的光谱参数和部分能级的自发辐射几率、荧光分支比、辐射寿命. 用McCumber理论计算了Tm3+离子3F43H6跃迁的受激发射截面, 在60TeO2-30WO3-9La2O3-1Tm2O3玻璃中, Tm3+离子的最大受激发射截面达到9.6×10-21cm2. 研究结果表明, 60TeO2-30WO3-10La2O3玻璃具有优良的热学性能和光谱性质, 是一种实现~2.0μm激光输出的理想玻璃基质材料.

本文引用格式

李科峰 , 汪国年 , 胡丽丽 , 张军杰 , 胡俊江 . WO3含量对Tm3+掺杂TeO2-WO3-La2O3玻璃热学性能及光谱性质的影响[J]. 无机材料学报, 2010 , 25(4) : 429 -434 . DOI: 10.3724/SP.J.1077.2010.00429

Abstract

Tungstenlanthanumtellurite (TWL) glasses with the molar composition (90-x)TeO2-xWO3-9La2O3-1Tm2O3(x=10, 20, 30(mol%)) were prepared. Effects of WO3 contents on the thermal stability and spectroscopic properties of Tm3+ doped TWL glasses were studied. It is found that the thermal stability of TWL glasses is improved with the increasing WO3 contents. For the glass with 30mol% WO3, the glass transition temperature(Tg) is 457℃, while onset crystallization temperature(Tx) is not observed in DTA curve, and the thermal expansion coefficient of the glass decreases to 1.224×10-5/℃ (30-300℃). The maximum phonon energy of the glasses shows the dependence on the host composition. The spectroscopic intensity parameters (Ωt t=2,4,6), radiative transition rates, radiative lifetimes, and branching ratios are calculated by Judd-Ofelt theory. The emission crosssection of Tm3+: 3F43H6 transition is calculated by McCumber theory. The maximum emission crosssection of Tm3+ in 60TeO2-30WO3-9La2O3-1Tm2O3 glass is 9.6×10-21cm2. Evaluated from the thermal and spectroscopic properties, 60TeO2-30WO3-10La2O3 glass is a promising host material for ~2.0μm laser.

参考文献

[1]Sedlacek T, Martineff M A, Esterowitz L, et al. Reduction of acoustic transients generated in liquid media and in tissue by pulsed 2μm lasers. SPIE Laser-Tissue Interaction III, 1992, 1646: 302-306.
[2]Koch G J, Beyon J Y, Barnes B W, et al. Highenergy 2μm Doppler lidar for wind measurements. Optical Engineering, 2007, 46(11): 116201-1-14.
[3]Renz G, Bohn W. A 2μmpump laser based DIRCM system and aerooptics in the midIR. Proc. SPIE, 2007, 6738(67380B):1-12.
[4]Chandra S, Wager M, Clayton B, et al. 2-micron pumped 8-12 micron OPO source for remote chemical sensing. Proc. SPIE, 2000, 4036:200-208.
[5]Jackson S D. 8.8 W diodecladdingpumped Tm3+,Ho3+-doped fluoride fibre laser.Electron. Lett., 2001, 37(13): 821-822.
[6]Jackson S D, Sabella A, Hemming A, et al. Highpower 83W holmiumdoped silica fiber laser operating with high beam quality. Opt. Lett., 2007, 32(3): 241-243.
[7]Tsang Y, Richards B, Binks D, et al. A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser.Opt. Express, 2008, 16(14):10690-10695.
[8]Tsang Y, Richards B, Binks D, et al. Tm3+/Ho3+ codoped tellurite fiber laser. Opt. Lett., 2008, 33(11):1282-1284.
[9]Richards B, Tsang Y, Binks D, et al. Efficient 2μm Tm3+-doped tellurite fiber laser. Opt.Lett., 2008, 33(4):402-404.
[10]Richards B, Shen S, Jha A, et al. Infrared emission and energy transfer in Tm3+,Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre. Opt. Express, 2007, 15(11):6546-6551.
[11]Wang J S, Vogel E M, Snitzer E, et al. Tellurite glass:a new candidate for fiber devices.Opt. Mater., 1994, 3(33):187-203.
[12]Fusari F, Lagatsky A A, Richards B, et al. Spectroscopic and lasing performance of Tm3+ doped bulk TZN and TZNG tellurite glasses operating around 1.9μm. Opt. Express, 2008, 16(23):19146-19151.
[13]Richards B, Tsang Y, Binks D, et al. ~2μm Tm3+/Yb3+doped tellurite fibre laser.J Mater. Sci.: Mater. Electron., 2009, 20(1):317-320.

[14]Feng X, Qi C H, Lin F Y, et al. Tungstentellurite glass: a new candidate medium for Yb3+-doping. J.NonCryst.Solids,1999, 256257:372-377.
[15]干福熹. 光学玻璃(上册), 2版. 北京: 科学出版社, 1982: 203206.
[16]Santos F E P dos, Fávero F C, Gomes A S L, et al. Evaluation of the third-order nonlinear optical properties of tellurite glasses by thermally managed eclipse Zscan. J.Appl. Phys., 2009, 105(2): 4512-1-4.
[17]Sokolov V O, Plotnichenko V G, Koltashev V V, et al. On the structure of tungstatetellurite glasses. J.NonCryst.Solids, 2006, 352(52/53/54): 5618-5632.
[18]吴家禄, 张军杰, 赖杨琼,等(WU Jia-Lu, et al). TeO2-ZnC12-BaO-NaF玻璃系统的结构及中红外透过特性的研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(2): 277-282.
[19]Himei Y, Osaka A, Nanba T, et al. Coordination change of Te atoms in binary tellurite glasses. J.Non.Cryst.Solids, 1994, 177(11): 164-169.
[20]Judd B R. Optical absorption intensities of rareearth ions. phys.Rev., 1962, 127(3):750-761.
[21]Ofelt G S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys.,1962, 37(3): 51l-520.
[22]Weber M J. Selective excitation and decay of Er3+ fluorescence in LaF3.Phys. Rev., 1967, 156(2): 231-241.
[23]Balda R, Lacha L M, Fernández J, et al. Spectroscopic properties of the 1.4μm emission of Tm3+ ions in TeO2-WO3-PbO glasses. Opt. Express, 2008, 16(16): 11836-11846.
[24]Kalaycioglu H, Cankaya H, Cizmeciyan M N, et al. Spectroscopic investigation of Tm3+:TeO2-WO3 glass. J. Luminescence, 2008, 128(9): 1501-1506.
[25]Ozen G, Aydunli A, Cenk S, et al. Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass. J. Luminescence, 2003, 101(4): 293-306.
[26]Babu P, Seo H J, Jang K H, et al. Optical spectroscopy and energy transfer in Tm3+-doped metaphosphate laser glasses. J. Phys. Condens. Matter, 2005, 17(32): 4859-4876.
[27]Naftaly M, Shen S X, Jha A. Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm. Appl. Opt., 2000, 39(27): 4979-4984.
[28]McCumber D E. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 1964, 136(4A): 954-957.
[29]Doualan J L, Girard S, Haquin H, et al. Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8μm. Opt. Mater., 2003, 24(3): 563-574.
[30]Balda R, Lacha L M, Fernández J, et al. Optical spectroscopy of Tm3+ ions in GeO2-PbO-Nb2O5 glasses. Opt. Mater., 2005, 27(11):1771-1775.
[31]Kermaoui A, Pelle F. Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses. J. Alloys Compd., 2009, 469(1/2): 601-608.
[32]Wang M, Yi L X, Chen Y K, et al. Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application. Mater. Chem. Phys., 2009, 114(1): 295-299.
[33]Weber M J, Ziegler D C, Angell C A. Tailoring stimulated emission cross sections of Nd3+ laser glass:Observation of large cross sections for BiCl3 glasses. J. Appl. Phys., 1982, 53(6): 4344-4350.

文章导航

/