研究论文

微波加热法制备Ag/TiO2及光催化降解气相甲苯

  • 李晓斌 ,
  • 陆晓华
展开
  • 华中科技大学 环境科学研究所, 武汉 430073

收稿日期: 2009-07-10

  修回日期: 2009-11-23

  网络出版日期: 2010-04-27

Microwave Heating Preparation of Agmodified TiO2 for Photocatalytic Degradation of Gaseous Toluene

  • LI Xiao-Bin ,
  • LU Xiao-Hua
Expand
  • Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2009-07-10

  Revised date: 2009-11-23

  Online published: 2010-04-27

摘要

以钛酸四丁酯为钛源, 分别使用微波加热法和水热法制备Ag改性的TiO2, 采用X射线衍射(XRD)、X射线荧光探针(XRF)、紫外可见漫反射(UV-Vis)和扫描电镜(SEM)对其进行表征. 以气相甲苯为降解对象, 分别在紫外和可见光辐照下, 对样品进行光催化活性试验. 结果表明:与水热法比较, 微波加热法更有利于Ag对TiO2微观结构的改性, 所制备的Ag改性TiO2包含了锐钛矿、金红石和板钛矿三种晶相, 其粒径更小(16.4nm)、孔道结构更丰富、团聚体更小(80~200nm)、带隙能更低(2.87eV), 表现出对气相甲苯更有效的紫外光和可见光降解能力.

关键词: 二氧化钛; 微波; 银改性

本文引用格式

李晓斌 , 陆晓华 . 微波加热法制备Ag/TiO2及光催化降解气相甲苯[J]. 无机材料学报, 2010 , 25(4) : 365 -369 . DOI: 10.3724/SP.J.1077.2010.00365

Abstract

Using Ti(OBu)4 as titanium source, Agmodified TiO2 was prepared by the microwave heating method and the hydrothermal ethod, respectively, and was characterized by Xray diffraction (XRD), Xray fluorescence (XRF), ultravioletvisible diffuse reflectance spectroscope (UV-Vis) and scanning electron microscope (SEM). The photocatalytic activity of the samples was tested in the degradation of gaseous toluene under UV and visible light irradiation, respectively. The results showed that the presence of Ag promoted the phase transformation of TiO2 from anatase to other phases. Compared with the hydrothermal method, the microwave heating method had more positive effect on the formation of Agmodified TiO2 with smaller crystallite size (16.4nm) and aggregate (80-200nm), more phases structure (anatase, rutile and brookite), richer channel structure, and lower band gap energy (2.87eV). Furthermore, Agmodified TiO2 prepared by the microwave heating method exhibited a better photocatalytic activity in the degradation of toluene under UV or visible light irradiation.

参考文献

[1]Hoffman M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96.
[2]Sun B, Reddy E P, Smirniotis P G. Visible light Cr(Ⅳ) reduction and organic chemical oxidation by TiO2 photocatalysis. Environmental Science & Technology, 2005, 39(16): 6251-6259.
[3]Wu Z B, Dong F, Zhao W R, et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. Journal of Hazardous Materials, 2008, 157(1): 57-63.
[4]Rengaraj S, Li X Z. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6trichlorophenol in aqueous suspension. Journal of Molecular Catalysis A: Chemical, 2006, 243(1): 60-67.
[5]Tada H, Ishida T, Takao A, et al. Drastic enhancement of TiO2photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir, 2004, 20(19): 7898-7900.
[6]Miao L, Ina Y, Tanemura S, et al. Fabrication and photochromic study of titanate nanotubes loaded with silver nanoparticles. Surface Science, 2007, 601(13): 2792-2799.
[7]He X, Zhao X J, Liu B S. The synthesis and kinetic growth of anisotropic silver particles loaded on TiO2 surface by photoelectrochemical reduction method. Applied Surface Science, 2008, 254(6): 1705-1709.
[8]Rodriguez J, Gomez M, Lindquist S E, et al. Photoelectrocatalytic degradation of 4chlorophenol over sputter deposited Ti oxide films. Thin Solid Films, 2000, 360(1/2): 250-255.
[9]Zhang J M, Wei X M, Xin H. Energy analysis for (111) twist grain boundary in noble metals. Applied Surface Science, 2005, 243(1-4): 1-6.
[10]Bykov Y V, Rybakov K I, Semenov V E. Hightemperature microwave processing of material. Journal of Physics D: Applied Physics, 2001, 34(13): 55-75.
[11]Yamamoto T, Wada Y, Yin H B, et al. Microwavedriven polyol method for preparation of TiO2 nanocrystallites. Chemistry Letters, 2002, 31(10): 964-965.
[12]Khan M A, Woo S I, Yang O B. Hydrothermally stabilized Fe(Ⅲ) doped titania active under visible light for water splitting reaction. International Journal of Hydrogen Energy, 2008, 33(20): 53455351.
[13]Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of AgTiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2005, 60(3/4): 211-221.
[14]Baghurst D R, Mingos D M P. Application of microwaveheating techniques for the synthesis of solidstate inorganiccompounds. Journal of the Chemical SocietyChemical Communications, 1988(12): 829-830.
[15]Oman D M, Dugan K M, Killian J L, et al. Device performance characterization and junction mechanisms in CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 1999, 58(4): 361-373.
[16]Rao K V S, Lavrine B, Boule P. Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 154(2/3): 189-193.
[17]Hamal D B, Klabunde K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 2007, 311(2): 514-522.
文章导航

/