沸水处理对45S5生物活性玻璃/聚乳酸复合膜性能的影响
收稿日期: 2009-07-21
修回日期: 2009-09-08
网络出版日期: 2010-04-27
Properties of Surface Modified 45S5/PDLLA Composite Films Treated with Boiling Water
Received date: 2009-07-21
Revised date: 2009-09-08
Online published: 2010-04-27
周艳玲 , 高 源 , 吕昔琴 , 常 江 . 沸水处理对45S5生物活性玻璃/聚乳酸复合膜性能的影响[J]. 无机材料学报, 2010 , 25(4) : 354 -358 . DOI: 10.3724/SP.J.1077.2010.00354
45S5 bioactive glasses (BGs) were surfacemodified with dodecyl alcohol through esterification reaction to get 45S5/PDLLA composite films. The properties of the composite films before and after treatment in boiling water for 20min were investigated. The results show that water contact angles of the composite films decrease sharply after the boling water treatment, indicating the improvement of the hydrophilicity of the composite films. Furthermore, after boiling water treatment, the tensile strength of the composite films decrease slightly, and is still higher than that of 45S5 BGs/PDLLA composite films, which illustrate that the treatment in boiling water does not affect the homogeneous dispersion of BGs particles in PDLLA matrix. Most importantly, cells on the composite films after hydrolysis show the highest proliferation rate and differentiation level.
Key words: 45S5; PDLLA; surface modification; hydrolysis
[1]Hench L L. Bioceramicsfrom concept to clinic. J. Am. Ceram. Soc., 1991, 74(7):1487-1510.
2]Jiang G, Evans M E, Jones I A, et al. Preparation of poly(epsiloncaprolactone)/continuous bioglass fibre composite using monomer transfer coulding for bone implant. Biomaterials, 2005, 26(15):2281-2288.
[3]Liu A X, Hong Z K, Zhuang X L, et al. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(Llactide) composites. Acta Biomater., 2008, 4(4):1005-1015.
[4]Maquet V, Boccaccini A R, Pravata L, et al. Porous poly(alphahydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials, 2004, 25(18):4185-4194.
[5]Misra S K, Mohn D, Brunner T J, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials, 2008, 29(12):1750-1761.
[6]Silva G A, Costa F J, Coutinho O P, et al. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J. Biomed. Mater. Res. A, 2004, 70A(3):442-449.
[7]upov M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J. Mater. Sci.Mater. Med., 2009, 20(6):1201-1213.
[8]BorumNicholas L, Wilson O C. Surface modification of hydroxyapatite. Part I Dodecyl alcohol. Biomaterials, 2003, 24(21):3671-3679.
[9]Vassylyev O, Chen J S, Hall G S, et al. Efficient surface functionalization of zeolites via esterification. Microporous Mesoporous Mater., 2006, 92(1/2/3):101-108.
[10]Wu S S, Zhang W H, Wang J, et al. Preysslerstructured tungstophosphoric acid catalyst on functionalized silica for esterification of nbutanol with acetic acid. Catal. Lett., 2008, 123(3/4):276-281.
[11]Cheng W, Chang J. Fabrication and characterization of polysulfonedicalcium silicate composite films. J. Biomater. Appl., 2006, 20(4):361-376.
[12]Ye L Z, Chang J, Ning C Q, et al. Fabrication of poly(DLlactic acid)wollastonite composite films with surface modified βCaSiO3 particles. J. Biomater. Appl., 2008, 22(5):465-480.
[13]Gao Y, Chang J. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films. J. Biomater. Appl., 2009, 24(2):119-138.
[14]Cheng Z Y, Teoh S H. Surface modification of ultra thin poly (epsiloncaprolactone) films using acrylic acid and collagen. Biomaterials, 2004, 25(11):1991-2001.
[15]Steele J G, McFarland C, Dalton B A, et al. Attachment of human bonecells to tissueculture polystyrene and to unmodified polystyrene: the effect of surfacechemistry upon initial cell attachment. J. Biomat. Sci.Polym. Ed., 1993, 5(3):245-257.
[16]Josset Y, Nasrallah F, Jallot E, et al. Influence of physicochemical reactions of bioactive glass on the behavior and activity of human osteoblasts in vitro. J. Biomed. Mater. Res. A, 2003, 67A(4): 1205-1218.
[17]Dufrane D, Delloye C, Mckay I J, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J. Mater. Sci.Mater. Med., 2003, 14(1):33-38.
[18]Lowry O H, Roberts N R, Leiner K Y, et al. The quantitative histochemistry of brain. III. Ammon’s horn. J. Biol. Chem., 1954, 207(1):39-49.
[19]Tyan Y C, Liao J D, Wu Y D, et al. Study of immobilized heparin in varied pH values onto porous nonwoven fabric surface. Chin. J. Med. Biol. Eng., 2000, 20(2):25-30.
[20]Ballard C C, Broge E C, McWhorter J R, et al. Esterification of surface of amorphous silica. J. Phys. Chem., 1961, 65(1):20-25.
[21]Ossenkamp G C, Kemmitt T, Johnston J H. Toward functionalized surfaces through surface esterification of silica. Langmuir, 2002, 18(15):5749-5754.
[22]Xynos I D, Hukkanen M V J, Batten J J, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcified. Tissue. Int., 2000, 67(4):321-329.
[23]Verrier S, Blaker J J, Maquet V, et al. PDLLA/Bioglass composites for soft-tissue and hardtissue engineering: an in vitro cell biology assessment. Biomaterials, 2004, 25(15):3013-3021.
[24]Silver I A, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 2001, 22(2):175-185.
[25]Webb K, Hlady V, Tresco P A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res., 1998, 41(3):422-430. [26]Hunter A, Archer C W, Walker P S, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopedic use. Biomaterials, 1995, 16(4):287-295.
/
〈 |
|
〉 |