研究论文

沸水处理对45S5生物活性玻璃/聚乳酸复合膜性能的影响

  • 周艳玲 ,
  • 高 源 ,
  • 吕昔琴 ,
  • 常 江
展开
  • 1. 中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 华东师范大学 生命科学学院, 上海 20006

收稿日期: 2009-07-21

  修回日期: 2009-09-08

  网络出版日期: 2010-04-27

Properties of Surface Modified 45S5/PDLLA Composite Films Treated with Boiling Water

  • ZHOU Yan-Ling ,
  • GAO Yuan ,
  • Lǖ Xi-Qin ,
  • CHANG Jiang
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Department of Life Science, East China Normal University, Shanghai 200062, China

Received date: 2009-07-21

  Revised date: 2009-09-08

  Online published: 2010-04-27

摘要

用十二醇修饰45S5生物活性玻璃粉体,并制备了45S5生物活性玻璃均匀分散的聚乳酸复合膜.将复合膜在沸水中处理20min后,研究了水解处理对复合膜性能的影响.处理之后,复合膜的亲水性得到恢复; 细胞增殖结果显示,水解处理后的复合膜更能促进骨髓干细胞的增殖与分化.尽管沸水处理之后,复合膜的力学强度有所下降,但仍高于未修饰粉体与聚乳酸复合膜的拉伸强度,说明沸水处理不影响无机颗粒在聚乳酸基体中的分布.沸水处理能够在较好保持复合膜力学性能的同时,有效而快速地恢复修饰后复合膜的亲水性,从而更利于骨髓干细胞的增殖和分化.

关键词: 45S5; 聚乳酸; 表面修饰; 水解

本文引用格式

周艳玲 , 高 源 , 吕昔琴 , 常 江 . 沸水处理对45S5生物活性玻璃/聚乳酸复合膜性能的影响[J]. 无机材料学报, 2010 , 25(4) : 354 -358 . DOI: 10.3724/SP.J.1077.2010.00354

Abstract

45S5 bioactive glasses (BGs) were surfacemodified with dodecyl alcohol through esterification reaction to get 45S5/PDLLA composite films. The properties of the composite films before and after treatment in boiling water for 20min were investigated. The results show that water contact angles of the composite films decrease sharply after the boling water treatment, indicating the improvement of the hydrophilicity of the composite films. Furthermore, after boiling water treatment, the tensile strength of the composite films decrease slightly, and is still higher than that of 45S5 BGs/PDLLA composite films, which illustrate that the treatment in boiling water does not affect the homogeneous dispersion of BGs particles in PDLLA matrix. Most importantly, cells on the composite films after hydrolysis show the highest proliferation rate and differentiation level.

参考文献

[1]Hench L L. Bioceramicsfrom concept to clinic. J. Am. Ceram. Soc., 1991, 74(7):1487-1510.
2]Jiang G, Evans M E, Jones I A, et al. Preparation of poly(epsiloncaprolactone)/continuous bioglass fibre composite using monomer transfer coulding for bone implant. Biomaterials, 2005, 26(15):2281-2288.
[3]Liu A X, Hong Z K, Zhuang X L, et al. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(Llactide) composites. Acta Biomater., 2008, 4(4):1005-1015.
[4]Maquet V, Boccaccini A R, Pravata L, et al. Porous poly(alphahydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials, 2004, 25(18):4185-4194.
[5]Misra S K, Mohn D, Brunner T J, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials, 2008, 29(12):1750-1761.
[6]Silva G A, Costa F J, Coutinho O P, et al. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J. Biomed. Mater. Res. A, 2004, 70A(3):442-449.
[7]upov M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J. Mater. Sci.Mater. Med., 2009, 20(6):1201-1213.
[8]BorumNicholas L, Wilson O C. Surface modification of hydroxyapatite. Part I Dodecyl alcohol. Biomaterials, 2003, 24(21):3671-3679.
[9]Vassylyev O, Chen J S, Hall G S, et al. Efficient surface functionalization of zeolites via esterification. Microporous Mesoporous Mater., 2006, 92(1/2/3):101-108.
[10]Wu S S, Zhang W H, Wang J, et al. Preysslerstructured tungstophosphoric acid catalyst on functionalized silica for esterification of nbutanol with acetic acid. Catal. Lett., 2008, 123(3/4):276-281.
[11]Cheng W, Chang J. Fabrication and characterization of polysulfonedicalcium silicate composite films. J. Biomater. Appl., 2006, 20(4):361-376.
[12]Ye L Z, Chang J, Ning C Q, et al. Fabrication of poly(DLlactic acid)wollastonite composite films with surface modified βCaSiO3 particles. J. Biomater. Appl., 2008, 22(5):465-480.
[13]Gao Y, Chang J. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films. J. Biomater. Appl., 2009, 24(2):119-138.
[14]Cheng Z Y, Teoh S H. Surface modification of ultra thin poly (epsiloncaprolactone) films using acrylic acid and collagen. Biomaterials, 2004, 25(11):1991-2001.
[15]Steele J G, McFarland C, Dalton B A, et al. Attachment of human bonecells to tissueculture polystyrene and to unmodified polystyrene: the effect of surfacechemistry upon initial cell attachment. J. Biomat. Sci.Polym. Ed., 1993, 5(3):245-257.
[16]Josset Y, Nasrallah F, Jallot E, et al. Influence of physicochemical reactions of bioactive glass on the behavior and activity of human osteoblasts in vitro. J. Biomed. Mater. Res. A, 2003, 67A(4): 1205-1218.
[17]Dufrane D, Delloye C, Mckay I J, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J. Mater. Sci.Mater. Med., 2003, 14(1):33-38.
[18]Lowry O H, Roberts N R, Leiner K Y, et al. The quantitative histochemistry of brain. III. Ammon’s horn. J. Biol. Chem., 1954, 207(1):39-49.
[19]Tyan Y C, Liao J D, Wu Y D, et al. Study of immobilized heparin in varied pH values onto porous nonwoven fabric surface. Chin. J. Med. Biol. Eng., 2000, 20(2):25-30.
[20]Ballard C C, Broge E C, McWhorter J R, et al. Esterification of surface of amorphous silica. J. Phys. Chem., 1961, 65(1):20-25.
[21]Ossenkamp G C, Kemmitt T, Johnston J H. Toward functionalized surfaces through surface esterification of silica. Langmuir, 2002, 18(15):5749-5754.
[22]Xynos I D, Hukkanen M V J, Batten J J, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcified. Tissue. Int., 2000, 67(4):321-329.
[23]Verrier S, Blaker J J, Maquet V, et al. PDLLA/Bioglass composites for soft-tissue and hardtissue engineering: an in vitro cell biology assessment. Biomaterials, 2004, 25(15):3013-3021.
[24]Silver I A, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 2001, 22(2):175-185.
[25]Webb K, Hlady V, Tresco P A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res., 1998, 41(3):422-430. [26]Hunter A, Archer C W, Walker P S, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopedic use. Biomaterials, 1995, 16(4):287-295.

文章导航

/