研究论文

Co/Co9S8/ZnO核壳结构纳米微球的制备与表征

  • 赖文忠 ,
  • 董校捷 ,
  • 黄 婧 ,
  • 冷永华 ,
  • 李星国
展开
  • 1. 北京分子科学国家实验室, 稀土材料化学及应用国家重点实验室, 北京大学 化学与分子工程学院, 北京 100871; 2. 三明学院 化学与生物工程系, 三明 365004

收稿日期: 2009-07-16

  修回日期: 2009-10-16

  网络出版日期: 2010-03-20

Preparation and Characterization of Co/Co9S8/ZnO Coreshell Nanoshperes

  • LAI Wen-Zhong ,
  • DONG Xiao-Jie ,
  • HUANG Jing ,
  • LENG Yong-Hua ,
  • LI Xing-Guo
Expand
  • 1. Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 2. Department of Chemistry and Biology Engineering, Sanming University, Sanming 365004, China

Received date: 2009-07-16

  Revised date: 2009-10-16

  Online published: 2010-03-20

摘要

在无水无氧条件下通过热分解还原制备Co纳米微粒,利用Co9S8和ZnO晶格的相匹配性,通过层层自组装对Co表面进行修饰,得到Co/Co9S8/ZnO核壳结构纳米微球.采用XRD、TEM、SQUID、光致发光光谱(PL)等对产物进行了表征.通过调节反应参数制备出核壳结构的Co/Co9S8/ZnO复合纳米微球,平均粒径58.8nm,壳层厚度均匀,常温下显示铁磁性,矫顽力为18.7kA/m.PL表明,产物在380~390nm处的带边跃迁不明显,光致发光最强峰在468nm处,属氧缺陷发射峰,研究了影响产物形貌的主要因素.结果表明,以油酸(OLA)及三正辛基氧化磷(TOPO)为溶剂和表面活性剂,Zn(acac)2温度为70℃、用量为1mmol,控制Co的硫化反应时间为5min,有利于核壳结构产物的形成.初步分析了Co/Co9S8/ZnO核壳结构纳米微球的形成机理.

本文引用格式

赖文忠 , 董校捷 , 黄 婧 , 冷永华 , 李星国 . Co/Co9S8/ZnO核壳结构纳米微球的制备与表征[J]. 无机材料学报, 2010 , 25(3) : 265 -271 . DOI: 10.3724/SP.J.1077.2010.00265

Abstract

Co/Co9S8/ZnO coreshell nanoshperes were successfully prepared via a thermal decomposition in the water and oxygenfree environmert. The latticematch between Co9S8 and ZnO played a significant role on the layerbylayer selfassembly of the coreshell nanospheres. The assynthesized nanospheres were characterized by XRD, TEM, SQUID and Photoluminescence Spectra. By controlling the reaction parameters, the coreshell nanostructure with uniform size of about 60 nm and shell thickness of 13.6nm was obtained. The effects on the shape control of the product were further investigated, and a proper formation mechanism of the Co/Co9S8/ZnO coreshell nanostructures was presumed. The results show that the favorable procedure to obtain the coreshell nanostructure shape is as follows, the reactants of OLA as solution and TOPO as surfactant, and the optimal temperature and quantity for precursor Zn(acac)2 is 70℃ and 1mmol, respectively. In additon, the sulfidation reaction time for Co is 5 min. The products show ferromagnetism at room temperature with a coercive force of 18.7kA/m. In the photoluminescence measurement, the strongest peak at 460nm which is attributed to oxygen defects can be obtained, while the band edge transitions of ZnO between 380nm and 390nm can hardly be observed.

参考文献

[1]Masala O, Seshadri R. Spinel ferrite/MnO core/shell nanoparticles:chemical synthesis of alloxide exchange biased architectures. J. Am. Chem. Soc., 2005, 127(26): 9354-9355.

[2]Lehmann O, Kmpe K, Haase M. Synthesis of Eu 3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles. J. Am. Chem. Soc., 2004, 126(45):14935-14942.

[3]Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noblemetal nanoparticles. Angew. Chem. Int. Ed. , 2004, 43(5):597-601.

[4]徐扬子, 胡 鹤(XU Yang-Zi, et al). ZnS包覆SiO2核壳和空腔结构纳米球制备研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(5):847-852.

[5]俞建长(YU Jian-Chang). 核壳结构的氧化锆包裹氧化铝纳米复合粉体的制备研究. 无机材料学报(Journal of Inorganic Materials), 2005, 20(5):1054-1057.

[6]王 毅, 姜 炜, 程志鹏, 等(WANG Yi, et al). 核壳结构Ni(Cu, Co)/A1微纳米复合粒子的制备及其与Fe2O3的热反应性能表征. 稀有金属材料与工程(Rare Metal Materials and Engineering), 2008, 37(7):1197-1200.

[7]Hines M A, GuyotSionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem., 1996, 100(2):468471.

[8]Sobal N S, Ebels U, Mhwald H, et al. Synthesis of core-shell PtCo nanocrystals. J. Phys. Chem. B, 2003, 107(30):7351-7354.

[9]Battaglin G, Catalano M, Cattaruzza E, et al. Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica. Nucl. Instr. and Meth. in Phys. Res. B, 2001, 178(14):176-179.

[10]Monteiro O C, Esteves A C C, Trindate T. The synthesis of SiO2@CdS nanocomposites using single-molecule precursors. Chem. Mater., 2002, 14(7):2900-2904.

[11]Gong J L, Jiang J H, Liang Y, et al. Synthesis and characterization of surfaceenhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. J. Colloid Interf. Sci., 2006, 298(2):752-756.

[12]刘 冰, 王德平, 黄文旵, 等(LIU Bing, et al). 溶胶凝胶法制备核壳SiO2/Fe3O4复合纳米粒子的研究. 无机材料学报(Journal of Inorganic Materials), 2008, 23(1):33-38.

[13]Caruntu D, Cushing B L, Carunru G, et al. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater., 2005, 17(13):3398-3402.

[14]Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc., 2006, 128(3):688-689.

[15]Arruebo M, Galán M, Navascués N, et al. Development of magnetic nanostructured silicabased materials as potential vectors for drug-delivery applications. Chem. Mater., 2006, 18(7):1911-1919.

[16]Zhang H R, Meyerhoff M E. Goldcoated magnetic particles for solidphase immunoassays:enhancing immobilized antibody binding efficiency and analytical performance. Anal. Chem., 2006, 78(2):609-616.

[17]Hu H, Zhang W H. Synthesis and properties of transition metals and rareearth metals doped ZnS nanoparticles. Opt. Mater., 2006, 28(5):536-550.

[18]何 静, 江伟辉, 于 云, 等(HE Jing, et al). TiO2-SiO2双组分膜结构与光催化性能的研究. 无机材料学报(Journal of Inorganic Materials), 2005, 20(3):713-719.

[19]Kim H, Achermann M, Balet L P, et al. Synthesis and characterization of Co/CdSe core/shell nanocomposites:bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc., 2005, 127(2):544-546.

[20]Kwon K W, Shim M. γ-Fe2O3/Ⅱ-Ⅵ sulfide nanocrystal heterojunctions. J. Am. Chem. Soc., 2005, 127(29):10269-10275.

[21]Shi W, Zeng H, Sahoo Y, et al. A general approach to binary and ternary hybrid nanocrystals. Nano Lett., 2006, 6(4):875-881.

[22]Kanaras A G, Snnichsen C, Liu H, et al. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett., 2005, 5(11):2164-2167.

[23]Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science, 2004, 304(5671):711-714.

文章导航

/