研究论文

含柠檬酸根电解液中钛表面电解沉积羟基磷灰石晶体的动力学过程

  • 杨成鑫 ,
  • 林东洋 ,
  • 江 勇 ,
  • 王小祥
展开
  • (浙江大学 材料科学与工程系, 杭州 310027)

收稿日期: 2009-05-27

  修回日期: 2009-09-05

  网络出版日期: 2010-02-20

Dynamic Effect of Citrate on Electrolytic Deposition of Hydroxyaptite on Ti Surface

  • YANG Cheng-Xin ,
  • LIN Dong-Yang ,
  • JIANG Yong ,
  • WANG Xiao-Xiang
Expand
  • (Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027,China)

Received date: 2009-05-27

  Revised date: 2009-09-05

  Online published: 2010-02-20

摘要

在含0.6mmol/L Ca2+ 离子和0.36mmol/L H2PO4-离子的电解液中加入2.4mmol/L柠檬酸根离子进行钛表面阴极电沉积. 结果表明柠檬酸根离子延长了HA晶体的形核孕育期, 并且晶体形貌由规则的六棱柱变化为细尖锥状. 通过沉积电流, 涂层增重, 晶形变化等规律对整个沉积过程做出阶段性划分(吸附期、孕育期、爆发生长期、次层生长期和平衡期), 并对各阶段的微观过程生长机理进行了探讨, 尝试建立了含柠檬酸根电解液中电解沉积HA晶体的生长模型.

本文引用格式

杨成鑫 , 林东洋 , 江 勇 , 王小祥 . 含柠檬酸根电解液中钛表面电解沉积羟基磷灰石晶体的动力学过程[J]. 无机材料学报, 2010 , 15(2) : 206 -210 . DOI: 10.3724/SP.J.1077.2010.00206

Abstract

During electrolytic deposition process of hydroxyapatite(HA) on Ti surface, 2.4mmol/L citrate is added into the electrolyte containing 0.6mmol/L Ca2+ ion and 0.36mmol/L H2PO4- ion. The results show that the incubation period of the HA is prolonged significantly, and the HA crystals take the morphology of needlelike cone rather than the typical hexagonal prism. Through analyzing the deposition current, coating weight increment and crystal morphology changes, the whole deposition process is divided into 5 procedures: adsorption period, incubation period, eruptive growth period, extra-layer growth period and balanced growth period. Based on the further discussion of micro-mechanism of each period, the HA crystal growth model during electrolytic deposition process is proposed.

参考文献

[1]Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 2002, 41(17):3130-3146.

[2]Hench L L. Bioceramics. J.Am.Ceram.Soc., 1998, 81(7):1705-1728.

[3]朱景川, 储成林, 尹钟大(ZHU Jing-Chuan, et al). 羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度. 稀有金属材料与工程(Rave Metal Mat. Eng.), 2003, 32(6):432-435.

[4]刘榕芳,肖秀峰, 陈古镛. 钛/羟基磷灰石涂层的电沉积过程及其结构特征.福建师范大学学报(自然科学版), 2001, 17(1):45-49.

[5]英国南安普顿电化学小组著, 柳厚田译. 电化学方法中的仪器方法. 上海:复旦大学出版社,1992:320.

[6]Ye Wei, Wang Xiao-Xiang. Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Mater. Lett., 2007, 61(19): 4062-4065.

[7] Ma Meng-Han, Ye Wei, Wang Xiao-Xiang. Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Mater. Lett., 2008, 62(23): 3875-3877.

[8] Yang G L, He F M. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2009, 107(6): 782-789.

[9]López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R. The role of pH in the adsorption of citrate ions on hydroxyapatite. J. Colloid. Interf. Sci., 1998, 200(1): 114-120.

[10]Rhee S H, Tanaka J. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials, 1999, 20(22):2155-2160.

[11]López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv. Mater. 1998, 10(1): 49-53.

[12] Li Chengfeng, Meng Fantao. Nano-crystallinite hydroxyapatite synthesized by neutralization with the assist of citric acid. Mater. Lett., 2008, 62(6/7):932-934.

[13]蔡明招. 分析化学实验. 北京:化学工业出版社, 2004:78-80.

[14]李 荻. 电化学原理,修订版. 北京:北京航空航天大学出版社,1999,163:196-198.

[15]Martins M A, Santos C, Almeida M M, et al. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. J. Colloid Interf. Sci., 2008, 318(2):210-216.

[16] Brown W E, Smith J P, Frazier A W. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature, 1962, 196(15):1050-1055.

[17] Xin Ren-Long, Leng Yang, Wang Ning. In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation. J. Cryst. Growth, 2006, 289(1): 339-344.

[18]Lu Xiong, Leng Yang. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 2005, 26(10): 1097-1108.

[19]Eliaz N, Kopelovitch W, Burstein L. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by realtime quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J. Biomed. Mate. Res. A, 2009, 89(1): 270-280.

[20]Filgueirasa M R T, Mkhonto D, Leeuw N H. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. J. Cryst. Growth, 2006, 294(1): 60-68.

[21]Leeuw N H, Rabone J A L. Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (01-10) surfaces in an aqueous environment. Cryst. Growth Eng. Comm., 2007, 9(12): 1178-1186.

[22]Jiang W G, Pan H H, Cai Y R, et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. Langmuir, 2008, 24(21): 12446-12451.

文章导航

/