研究论文

GeS2-Ga2S3-AgCl玻璃的光学特性研究

  • 范鑫烨 ,
  • 徐铁峰 ,
  • 沈 祥 ,
  • 戴世勋 ,
  • 聂秋华 ,
  • 王训四 ,
  • 陈飞飞
展开
  • (宁波大学 信息科学与工程学院, 宁波 315211)

收稿日期: 2009-05-25

  修回日期: 2009-09-02

  网络出版日期: 2010-02-20

Study of Optical Properties of GeS2-Ga2S3-AgCl Glasses

  • FAN Xin-Ye ,
  • XU Tie-Feng ,
  • SHEN Xiang ,
  • DAI Shi-Xun ,
  • NIE Qiu-Hua ,
  • WANG Xun-Si ,
  • CHEN Fei-Fei
Expand
  • (College of Information Science and Engineering, Ningbo University, Ningbo 315211, China)

Received date: 2009-05-25

  Revised date: 2009-09-02

  Online published: 2010-02-20

摘要

采用熔融淬冷法制备了摩尔组成为(100-x)(0.85GeS2-0.15Ga2S3)-xAgCl(x=0,5,10,15,20)硫卤玻璃, 测试了样品的密度、转变温度、析晶温度、可见到中远红外透过光谱、吸收光谱以及折射率参数, 根据Z扫描测试原理用钛宝石飞秒激光器测试了样品的三阶非线性特性. 利用经典的Tauc方程计算了样品光学带隙允许的直接跃迁、允许的间接跃迁及Urbach能量.讨论了玻璃的摩尔折射度、金属标准值、光学带隙、Urbach能量对玻璃样品折射率的影响.结果表明:该系统玻璃具有较宽光谱, 从可见到中远红外透过区域(0.46~11.50)μm,可作为潜在的多光谱成像材料.随AgCl含量的增加, 玻璃的折射率随着摩尔折射度增大而增大, 金属标准值、光学带隙与Urbach能量有减小的趋势, 而玻璃的三阶非线性性能得到明显提高.

本文引用格式

范鑫烨 , 徐铁峰 , 沈 祥 , 戴世勋 , 聂秋华 , 王训四 , 陈飞飞 . GeS2-Ga2S3-AgCl玻璃的光学特性研究[J]. 无机材料学报, 2010 , 15(2) : 191 -195 . DOI: 10.3724/SP.J.1077.2010.00191

Abstract

A series of (100-x)(0.85GeS2-0.15Ga2S3)-xAgCl(x=0,5,10,15,20)glasses were prepared by conventional melt-quenching technique. The physical and optical properties, including densities, refractive indices, transition temperatures, crystallization temperatures, absorption spectra and transmission spectra, were determined. The allowed direct transition, indirect transition and Urbach energy of samples were calculated according to the classical Tauc equation. Z-scan technique was carried out to investigate the third-order nonlinear optical properties of the samples. The results show that these GeS2-Ga2S3-AgCl glasses have a wide range of transmission approximately from 0.46μm to 11.5μm, and high refractive indices which are more than 2.2. With the AgCl content increasing, the refractive indices and the third-order nonlinearity increase, molar refraction, while metallization criterion and Urbach energy decrease. The effects of metallization criterion, optical band gap and Urbach energy on refractive indices of glass samples are also discussed.

参考文献

[1]卢安贤.新型功能玻璃材料.湖南:中南大学出版社, 2005:165-174.

[2]泉谷徹郎, 杨淑清译.光学玻璃与激光玻璃开发.北京:兵器工业出版社, 1996:229-246.

[3]Rafea M A, Farid H. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films. Materials Chemistry and Physics, 2009, 113(2): 868-872.

[4]Ebothe J, Plucinski K J, Imiolek W, et al. GeSe2-Ga2S3-PbI2 glass alloys like second-order non-linear optical materials. Journal of Alloys and Compounds, 2008, 456(1/2):27-29.

[5]Wang Y L, Dai S X, Chen F F, et al. Physical properties and optical band gap of new tellurite glasses within the TeO2-Nb2O5-Bi2O3 system. Materials Chemistry and Physics, 2009, 113(1):407-411.

[6]Sreemany M, Sen S. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Materials Chemistry and Physics, 2004, 83(1):169-177.

[7]Dimitrov V, Komatsu T. Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. Journal of the Ceramic Society of Japan, 1999, 107(11): 1012-1018.

[8]Saffarini G, Saiter J M, Schmitt H. The composition dependence of the optical band gap in Ge-Se-In thin films. Optical Materials, 2007,29(9):1143-1147.

[9]Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. Journal of Applied Physics, 1996, 79(3):1741-1745.

[10]Hasegawa T, Nagashima T, Sugimoto N. Z-scan study of third-order optical nonlinearities in bismuth-based glasses.Optical Communications, 2005, 250(4/5/6): 411-415.

[11]Tao H Z, Dong G P, Zhai Y B, et al. Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses. Solid State Communications, 2006, 138(10/11): 485-488.

[12]Saffarini G, Saited J M, Schmitt H, et al. The composition dependence of the optical band gap in Ge-Se-In thin films. Optical Materials, 2007, 29(9): 1143-1147.

[13]Song K H, Kim S W, Seo J H, et al. Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films.Thin Solid Films, 2009, 517(14): 3958-3962.

[14]Dimitrov V, Komatsu T. Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. Journal of Non-Crystalline Solids, 1999, 249(2/3): 160-179.

[15]Petit L, Carlie N, Adamietz F. Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S. Materials Chemistry and Physics, 2006, 97(1): 64-70.

[16]Le Person J, Smektala F, Chartier T, et al. Light guidance in new chalcogenide holey fibres from GeGaSbS glass. Materials Research Bulletin, 2006, 41(7):1303-1309.

[17]Tanaka K J. Nonlinear optics in glasses: how can we analyze? Journal of Physics and Chemistry of Solids, 2007, 68(5/6):896-900.

[18]Macdonald J R, Phillips J C. Analysis of conducting-system frequency response data for an interfacial amorphous phase of copper-core oxide-shell nanocomposites. Journal of Chemical Physics, 2005,122(7): 074510-1-8.

[19]周跃芬, 刘粤惠, 戴世勋, 等(ZHOU Yue-Fen, et al). 宽带放大器用碲酸盐玻璃研究进展. 无机材料学报(Journal of Inorganic Materials), 2003, 18(3): 513-518.

[20]Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear As-S-Se glasses for all-optical switching. Optics Letters,2002, 27(2):119-121.

文章导航

/