Lu-Si-O体系在高温水蒸气环境中的腐蚀行为
Corrosion Behavior of Lu-Si-O System in Water Vapor
Received date: 2009-06-22
Revised date: 2009-09-02
Online published: 2010-02-20
采用溶胶-凝胶法制得三种镥硅酸盐体系粉体材料. 以氧化物的摩尔比来表示此三种粉体, 分别为:Lu2O3·SiO2、Lu2O3·2SiO2和Lu2O3·2.26SiO2. 在1400℃、50%H2O-50%O2静态常压气氛下, 研究了它们的耐水蒸气腐蚀性能.以单位面积重量变化率表征材料的耐水蒸气腐蚀性能, 结合X射线衍射(XRD)、傅里叶红外光谱(FTIR)和扫描电镜能谱分析(SEMEDS)等分析手段, 揭示了镥硅酸盐体系在高温水蒸气环境中的腐蚀机制和反应机理. 结果表明:三种原始粉体主要物相依次为:Lu2SiO5+Lu2Si2O7、 Lu2Si2O7+SiO2和Lu2Si2O7+SiO2. 在水蒸气作用下, Lu2SiO5相与Al2O3反应生成新相Lu3Al5O12, 而Lu2Si2O7相并未受到水蒸气的作用而发生任何反应, 表现出优异的化学稳定性.
洪智亮 , 成来飞 , 鲁琳静 , 张立同 , 王一光 . Lu-Si-O体系在高温水蒸气环境中的腐蚀行为[J]. 无机材料学报, 2010 , 15(2) : 186 -190 . DOI: 10.3724/SP.J.1077.2010.00186
Three kinds of lutetium silicates powders were prepared by solgel method, marked by Lu2O3·SiO2, Lu2O3·2SiO2 and Lu2O3·2.26SiO2, respectively. Their corrosion behavior in water vapor was investigated in 50%H2O-50%O2 steam environment with a total pressure of 1.01×105Pa at 1400℃. The specific weight change as a function of corrosion time was recorded. The phase evolution of lutetium silicate at different corrosion stages was observed by X-ray diffraction. The bonds of samples after corroded for different times were characterized by fourier transform infrared spectroscope(FTIR). The composition of corroded samples was analyzed by EDS. The results show that the main crystal phases of the as-prepared samples are Lu2SiO5+Lu2Si2O7, Lu2Si2O7+SiO2 and Lu2Si2O7+SiO2, respectively. Lu2SiO5, instead of Lu2Si2O7, reacts with Al2O3 to form garnet phase (Lu3Al5O12) in the water vapor environment. This indicates that Lu2Si2O7 exhibits more excellent chemical stability than Lu2SiO5.
[1]Cheng L F, Xu Y D, Zhang L T, et al. Preparation of an oxidation protection coating for C/C composites by low pressure chemical vapor deposition. Carbon, 2000, 38(10): 2103-2108.
[2]Opila E J, Fox D S, Jacobson N S. Mass spectrometric identification of SiOH(g) species from the reaction of silica with water vapor at atmospheric pressure. J. Am. Ceram. Soc., 1997, 80(4): 1009-1012.
[3]Robinson R C, Smialek J L. SiC recession caused by SiO2 scale volatility under combustion conditions:I, experimental results and empirical model. J. Am. Ceram. Soc., 1999, 82(7): 1817-1825.
[4]Opila E J, Smialek J L, Robinson R C, et al. SiC recession caused by SiO2 scale volatility under combustion conditions:II, thermodynamis and gaseousdiffusion model. J. Am. Ceram. Soc., 1999, 82(7): 1826-1834.
[5]Opila E J. Oxidation and volatilization of silica formers in water vapor. J. Am. Ceram. Soc., 2003, 86(8): 1238-1248.
[6]Lee K N. Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol., 2000, 133-134: 1-7.
[7]Lee K N, Miller R A. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics. Surf. Coat. Technol., 1996, 86-87(1/2/3): 142-148.
[8]Lee K N, Fox D S, Eldridge J I. Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J. Am. Ceram. Soc., 2004, 86(8): 1299-1306.
[9]Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC-SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc., 2005, 25(10): 1705-1715.
[10]Hong Z L, Cheng L F, Zhang L T, et al. Water vapor corrosion of scandium silicates at 1400℃. J. Am. Ceram. Soc., 2009, 92(1): 193-196.
[11]Wang Y G, Liu J L. Firstprinciples investigation on the corrosion resistance of rare earth disilicates in water vapor. J. Eur. Ceram. Soc., 2009, 29(11): 2163-2167.
[12]Ueno S, Jayaseelan D D, Ohji T. Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers. Ceram. Process. Res., 2004, 5(4): 355-359.
[13]Ueno S, Jayaseelan D D, Kita H, et al. Comparison of water vapor corrosion behaviors of Ln2Si2O7 (Ln=Yb) and ASiO4 (A=Ti, Zr and Hf) EBC’s. Key Eng. Mater., 2006, 317-318: 557-560.
[14]Ueno S, Jayaseelan D D, Ohji T. Water vapor corrosion behavior of lutetium silicates at high temperature. Ceram. Int., 2006, 32(4): 451-455.
[15]Maier N, Nickel K G, Rixecker G. High temperature water vapour corrosion of rare earth disilicates (Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities. J. Eur. Ceram. Soc., 2007, 27(7): 2705-2713.
[16]Kepiński L, Maczka M, Drozd M. Formation and characterization of Lu silicate nanoparticles in amorphous SiO2.J. Alloys Compounds, 2007, 443(1/2): 132-142.
[17]Alba M D, Chaín P. Persistence of lutetium disilicate. Appl. Geochemistry, 2007, 22(1): 192-201.
[18]Li H L, Liu X J, Huang L P. Synthesis of lutetium aluminum garnet powders by nitrate-citrate sol-gel combustion process. Ceram. Int., 2007, 33(6): 1141-1143.
/
〈 |
|
〉 |