研究论文

锌硼玻璃掺杂低压ZnO压敏电阻电性能及晶粒生长动力学研究

  • 万 帅 ,
  • 吕文中
展开
  • (华中科技大学 电子科学与技术系, 武汉 430074)

收稿日期: 2009-06-09

  修回日期: 2009-09-09

  网络出版日期: 2010-02-20

Electrical Properties and Kinetic of Crystalline Grain Growth of Low-voltage ZnO Varistor Doped with Zn-B Glass

  • WAN Shuai ,
  • Lv Wen-Zhong
Expand
  • (Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Received date: 2009-06-09

  Revised date: 2009-09-09

  Online published: 2010-02-20

摘要

研究了锌硼玻璃掺杂量对低压ZnO压敏电阻微观结构和电性能的影响. 结果表明, 当掺杂量x=0.1wt%时, 可以得到较好综合性能的ZnO压敏电阻:E1mA=36.7V/mm, α=30.4, IL=0.1μA. 并应用晶粒生长动力学唯象理论研究了锌硼玻璃掺杂低压ZnO压敏电阻的晶粒生长规律, 探讨了锌硼玻璃掺杂对低压ZnO压敏陶瓷晶粒生长的作用机理. 当烧结温度T≤1000℃时,其晶粒生长动力学指数n≈4.54, 激活能Q≈316.5kJ/mol, 这是由于未熔融的锌硼玻璃通过颗粒阻滞机理阻碍了ZnO压敏陶瓷晶粒的生长; 而当T>1000℃时, 其晶粒生长动力学指数n≈2.92, 激活能Q=187kJ/mol, 这是由于熔融的锌硼玻璃通过液相烧结机理促进了晶粒的生长.

本文引用格式

万 帅 , 吕文中 . 锌硼玻璃掺杂低压ZnO压敏电阻电性能及晶粒生长动力学研究[J]. 无机材料学报, 2010 , 15(2) : 157 -162 . DOI: 10.3724/SP.J.1077.2010.00157

Abstract

The effects of Zn-B glass additive on microstructure and electrical properties of low-voltage ZnO varistor were studied. The results show that ZnO varistor with x=0.1wt% obtains the optimal nonlinear electrical properties: E1mA=36.7V/mm, α=30.4, IL=0.1μA. The grain growth mechanism of low-voltage ZnO varistor doped with Zn-B glass is also investigated in terms of the phenomenological kinetic of crystalline grain growth. Based on the theory, the grain growth kinetic exponent n and apparent activation energy Q are calculated as 4.54 and 316.5kJ/mol for ZnO ceramics varistor sintered at the temperature below 1000℃. The grain growth mechanism is that non-melting Zn-B glass pins the ZnO grain boundaries, which inhibits the grain growth of ZnO varistor. However, n and Q value are 2.92 and 187kJ/mol at the temperature higher than 1000℃. It indicates that melting Zn-B glass wetting the ZnO grain boundaries creates a liquid phase sintering mechanism, which accelerates the grain growth of ZnO varistor.

参考文献

[1]Senda T, Bradt R C. Grain growth in sintered ZnO and ZnO-Bi2O3 ceramics. J. Am. Ceram. Soc., 1990, 73(1):106-114.

[2]Hng H H, Halim L. Grain growth in sintered ZnO-1mol% V2O5 ceramics. Mater. Lett., 2003, 57(8):1411-1416.

[3]Hng H H, Tse K Y. Grain growth of ZnO in binary ZnO-V2O5 ceramics. J. Mater. Sci., 2003, 38(11):2367-2372.

[4]张丛春, 周东祥, 龚树萍, 等. TiO2掺杂对低压 ZnO压敏电阻性能的影响. 压电与声光, 2001, 23(3):195-197.

[5]何忠伟, 徐 政, 孙丹峰, 等(HE Zhong-Wei, et al). TiO2掺杂对低压 ZnO压敏电阻低压化过程的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2004, 32(9):1161-1164.

[6]林 枞, 徐 政, 孙丹峰, 等(LIN Cong, et al). TiO2掺杂对 ZnO-Bi2O3-TiO2低压压敏电阻电学性能的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2007, 35(1):21-25.

[7]肖 明. TiO2掺杂ZnO压敏陶瓷的晶粒生长研究. 湖北大学学报, 2001, 23(2):134-138.

[8]Tsai Jyh-Kuang, Wu Tai-Bor. Microstructure and nonohmic properties of binary ZnO-V2O5 ceramics sintered at 900℃. Mater. Lett., 1995, 26(3):199-203.

[9]林 枞, 徐 政, 彭 虎, 等(LIN Cong, et al). 微波烧结氧化锌压敏电阻的致密化和晶粒生长. 无机材料学报(Journal of Inorganic Materials), 2007, 22(5):917-921.

[10]Han J, Martas P Q, Senos A M R. Grain growth in Mndoped ZnO. J. Eur. Ceram. Soc., 2000, 20(16):2753-2758.

文章导航

/