研究论文

载铜活性炭微球的制备及抗菌性能

  • 谭三香 ,
  • 谭绍早 ,
  • 刘应亮 ,
  • 蒋凤平 ,
  • 袁定胜
展开
  • 暨南大学 1. 化学系; 2. 纳米化学研究所, 广州 510632

收稿日期: 2009-07-08

  修回日期: 2009-08-27

  网络出版日期: 2010-03-20

Preparation and Antibacterial Property of Copper-loaded
Activated Carbon Microspheres

  • TAN San-Xiang ,
  • TAN Shao-Zao ,
  • LIU Ying-Liang ,
  • JIANG Feng-Ping ,
  • YUAN Ding-Sheng
Expand
  • 1. Department of Chemistry, Jinan University, Guangzhou 510632, China; 2. Institute of Nanochemistry, Jinan University,
    Guangzhou 510632, China

Received date: 2009-07-08

  Revised date: 2009-08-27

  Online published: 2010-03-20

摘要

以水热法合成的炭微球为原料, 经KOH活化制备了活性炭微球, 通过在氯化铜溶液中浸渍使铜吸附在活性炭微球上, 得到载铜活性炭微球. 采用XRD、SEM、TEM、EDS、XPS和N2吸脱附对载铜前后活性炭微球的结构和形貌进行了表征, 并测试了其抗菌活性. 研究表明, 活性炭微球表面负载的铜是以离子形式存在, 并且随着溶液中铜离子浓度的增加, 载铜量增大, 氨水的加入可明显提高铜的负载量. 抗菌结果显示, 载铜活性炭微球对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)具有良好的杀灭能力. 因此, 它作为一种抗菌材料有望在水处理、气体过滤和微生物污染等方面获得应用.

本文引用格式

谭三香 , 谭绍早 , 刘应亮 , 蒋凤平 , 袁定胜 . 载铜活性炭微球的制备及抗菌性能[J]. 无机材料学报, 2010 , 25(3) : 299 -305 . DOI: 10.3724/SP.J.1077.2010.00299

Abstract

Carbon microspheres (CMs) were prepared via
a hydrothermal method, and then activated with KOH to form activated carbon microspheres (ACMs). Copperloaded activated carbon microspheres (CuACMs) were obtained by the direct immersion in CuCl2 aqueous solution. The structure and morphology of ACMs and Cu-ACMs were characterized by XRD, SEM, TEM, EDS, XPS and N2 adsorptiondesorption isotherms. The experimental results show that the copper valence state of Cu-ACMs samples is Cu 2+ ion, and the amount of absorbed copper increases with the increase of copper ion concentration in solution. The addition of ammonia can significantly improve the amount of absorbed copper. The antibacterial activities of asprepared materials measured indicate that the Cu-ACMs have the good activities to kill E. coli and S. aureus. Therefore, Cu-ACMs is a potential candidate as the antibacterial materials in some applications, such as water treatment, gas filtration and microbial contamination, etc.

参考文献

[1] Oya A, Yoshida S, Abe Y, et al. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon, 1993, 31(1): 71-73.

[2]OrtizIbarra H, Casillas N, Soto V, et al. Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes. J. Colloid Interface Sci., 2007, 314(2): 562-571.

[3]Park S J, Jane Y S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Colloid Interface Sci., 2003, 261(2): 238-243.

[4]Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silverdispersed activated carbon aerogels. Carbon, 2004, 42(15): 3209-3216.

[5]Jin Y Z, Gao C, Hsu K W, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, 2005, 43(9): 1944-1953.

[6]Xu L, Zhang W, Yang Q, et al. A novel route to hollow and solid carbon spheres. Carbon, 2005, 43(5): 1090-1092.

[7]Yang J B, Ling L C, Liu L, et al. Preparation and properties of phenolic resinbased activated carbon spheres with controlled pore size distribution. Carbon, 2002, 40(6): 911-916.

[8]Wang Q, Cao F, Chen Q, et al. Preparation of carbon microspheres by hydrothermal treatment of methylcellulose sol. Mater. Lett., 2005,59(28): 3738-3741.

[9]Kim T N, Feng Q L, Kim J O, et al. Antimicrobial effects of metal ions (Ag +, Cu 2+, Zn 2+ ) in hydroxyapatite. J. Mater. Sci.: Mater. Med., 1998, 9(3): 129-134.


[10]叶 瑛,周玉航,夏枚生,等(YE Ying, et al). 新型无机抗菌材料: 载铜蒙脱石及其抗菌机理讨论.无机材料学报(Journal of Inorganic Materials),2003,18(3): 569-574.

[11]张 彬,唐晓宁,张皓东. 铜, 银双组分无机抗菌材料的制备和性能研究. 化工新型材料,2007, 35(2): 73-75.

[12]Tan S Z, Zhang L L, Huang L H, et al. Study on the heat treating process of silver-carried antibacterial agent. J. Ceram. Soc. Japan, 2007, 115(4): 269-271.

[13]Tan S Z, Ouyang Y S, Zhang L L, et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate. Mater. Lett., 2008, 62(14):2122-2124.

[14]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & App. Chem., 1985, 57(4): 603-619.

[15]Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids: Priciples, Methodology, Applications. New York: Academic Press, 1999.

[16]Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv.Funct. Mater., 2005, 15(4): 547-556.

[17]Wang Z, Ergang N S, AlDaous M A, et al. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites. Chem. Mater., 2005, 17(26):6805-6813.

[18]Kim Y H, Lee D K, Cha H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B,2006, 110(49): 24923-24928.

[19]Zhang W, Zhang Y H, Ji J H, et al. Antimicrobial properties of copper plasma-modified polyethylene. Polymer, 2006, 47(21): 7441-7445.

[20]Bond A M, Miao W J, Raston C L. Mercury (Ⅱ) immobilized on carbon nanotubes: synthesis, characterization and redox properties. Langmuir,2000, 16(14): 6004-6012.

[21]Yuan D, Liu Y. Electroless deposition of Cu on multiwalled carbon nanotubes. Rare Met., 2006, 25(3): 237-240.

[22]Zhao D F, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl. Clay Sci., 2006, 33(3/4): 161-170.

[23]Trapalis C C, Kokkoris M, Perdikakis G, et al. Study of antibacterial composite Cu/SiO2 thin coatings. J. Sol-Gel Sci. Technol., 2003, 26(3): 1213-1218.

[24]李炜罡,吕维平,王海滨,等. 抗菌材料进展. 化工新型材料,2003,31(3): 7-10.

文章导航

/