研究论文

(Mg1-xZnx)2 SiO4 (0≤x≤1)陶瓷微波介电性能研究

  • 宋开新 ,
  • 应智花 ,
  • 邵李焕 ,
  • 郑 梁 ,
  • 徐军明 ,
  • 秦会斌
展开
  • 杭州电子科技大学 电子信息学院 电子材料与器件实验室, 杭州 310018

收稿日期: 2009-07-08

  修回日期: 2009-09-21

  网络出版日期: 2010-03-20

Investigation of Microwave Dielectric Properties of (Mg1-xZnx)2SiO4 (0≤x≤1) Ceramics

  • SONG Kai-Xin ,
  • YING Zhi-Hua ,
  • SHAO Li-Huan ,
  • ZHENG Liang ,
  • XU Jun-Ming ,
  • QIN Hui-Bin
Expand
  • College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Received date: 2009-07-08

  Revised date: 2009-09-21

  Online published: 2010-03-20

摘要

采用固相反应法制备(Mg 1-x Znx)2 SiO4 (0≤x≤1)微波介质陶瓷, 研究(Mg 1-x Znx)2 SiO4 陶瓷在0≤x≤1范围内的相演变、微结构与其微波介电性能间相互关系. XRD测试结果表明:橄榄石结构的Mg2SiO4与硅矽矿结构的Zn2SiO4在晶体结构上存在很大差别, (Mg, Zn)2 SiO4在0≤x≤1范围内只能部分地实现有限固溶. 背散射电子扫描显微镜(BESEM)测试结果显示:随着x的增加, MgSiO3第二相得到抑制; 陶瓷出现液相烧结, 促进晶粒生长与玻璃相在晶界处沉积. 微波介电性能测试结果表明:由于Zn 2+离子极化能力大于Mg 2+离子, (Mg 1-x Znx)2 SiO4 (0≤x≤1)陶瓷介电常数随x值增加而增大; 0≤
x≤1范围内, Mg2SiO4陶瓷微波性能由于第二相、气孔率增加与晶粒增大而降低, Zn2SiO4陶瓷由于微结构得到改善, 陶瓷微波性能得到优化. 当x=0.6时, 得到较好的(Mg 0.4 Zn 0.6)2 SiO4 陶瓷微波性能为:εr=6.6, Qf=95650GHz,τf=-60×10-6/℃

本文引用格式

宋开新 , 应智花 , 邵李焕 , 郑 梁 , 徐军明 , 秦会斌 . (Mg1-xZnx)2 SiO4 (0≤x≤1)陶瓷微波介电性能研究[J]. 无机材料学报, 2010 , 25(3) : 255 -258 . DOI: 10.3724/SP.J.1077.2010.00255

Abstract

The phase evolutions, microstructures, and microwave dielectric properties of (Mg 1-x Znx)2 SiO4 (0≤x≤1) ceramics were investigated. The XRD results show that Mg2SiO4 and Zn2SiO4 are partly limited solid solution in the systems of (Mg 1-x Znx)2 SiO4 ceramics, due to the large differences between their crystal structures. BESEM images show that with the increases of x, the second phase of MgSiO3 will be suppressed, and the occurrence of liquid phase sintering accelerates the growth of crystal grain and aggradations of glass phase in the boundary of grain. The dielectric constants of (Mg 1-x Znx)2 SiO4 ceramics gradually increase because of the polarization of Zn 2+ ion is larger than that of Mg 2+ ion. The microwave properties of (Mg 1-x Znx)2 SiO4 ceramics change with the variant of x value, together with external factors of the secondary phase, porosity and grain size of(Mg 1-x Znx)2 SiO4 ceramics. When x is equal to 0.6, the optimum microwave dielectric properties of (Mg 0.4 Zn 0.6 )2 SiO 4 ceramics is obtained:εr=6.6, Qf=95650GHz, τf=-60×10-6 /℃.

参考文献

[1]Reaney I M, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc., 2006, 89(7): 2063-2072.

[2] Fujii T, Ando A, Sakabe Y. Charaterization of dielectric properties of oxide materials in frequency range from GHz to THz. J. Eur. Ceram. Soc., 2006, 26(10/11):1857-1860.

[3] Penn S J, Alford N McN, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc., 1997, 80(7): 1885-1888.

[4] Zheng C W, Wu S Y, Chen X M, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn-substitution. J. Am. Ceram. Soc., 2007,90(5): 1483-1486.

[5] Lei W, Lu W Z, Zhu J H, et al. Modification of ZnAl2O4-based lowpermittivity microwave dielectric ceramics by adding 2MO-TiO2(M=Co, Mg and Mn).J. Am. Ceram. Soc., 2008, 91(6): 1958-1961.

[6] Tsunooka T, Androu M, Higashida Y, et al. Microwave dielectric properties of forsterite based solid solutions. J. Eur. Ceram. Soc., 2003, 23(14): 2573-2578.

[7] Guo Y P, Ohsato H, Kakimoto K. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 2006, 26(10/11):1827-1830.

[8] Song M E, Kim J S, Joung M R, et al. Synthesis and microwave dielectric properties of MgSiO3 ceramics. J. Am. Ceram. Soc., 2008, 91(8):2747-2750.

[9] Song K X, Chen X M. Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater. Lett., 2007,61(17): 3127-3131.

[10] Hakki B W, coleman P D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Micro. Theor. Tech., 1960, 8(4): 402-410.

[11] Segnit E R, Holland A E. The system MgO-ZnO-SiO2. J. Am. Ceram. Soc.
, 1965, 48(8): 409-413.

文章导航

/