研究论文

两步晶化法制备介孔材料及其催化性能研究

  • 刘维桥 ,
  • 尚通明 ,
  • 李 工 ,
  • 吴非克 ,
  • 佟惠娟2 ,
  • 孙予罕
展开
  • 1. 江苏技术师范学院 化学化工学院, 常州 213001; 2. 江苏工业学院 化学工程系, 常州 213016; 3. 中国科学院 山西煤炭化学研究所, 太原 030001

收稿日期: 2009-07-08

  修回日期: 2009-09-12

  网络出版日期: 2010-03-20

Synthesis and Catalytic Performance of Mesoporous Material by Twostep Crystallization

  • LIU Wei-Qiao ,
  • SHANG Tong-Ming ,
  • LI Gong ,
  • WU Fei-Ke ,
  • TONG Hui-Juan ,
  • SUN Yu-Han
Expand
  • 1. School of Chemistry and Chemical Engineering,Jiangsu Teachers University of Technology, Changzhou 213001, China; 2. Department of Chemical Engineering,Jiangsu Polytechnic University, Changzhou 213016, China; 3. Institute of Coal Chemistry,Chinese Academy of Sciences, Taiyuan 030001, China

Received date: 2009-07-08

  Revised date: 2009-09-12

  Online published: 2010-03-20

摘要

采用两步晶化法,由MCM-22沸石前驱体合成了一种介孔材料.通过XRD、N2吸附脱附、TEM、27Al MAS NMR以及吡啶吸附红外光谱等技术对样品进行了表征.结果显示所合成的样品不是微孔沸石与介孔材料的混合物,而是含强酸性中心、水热稳定性良好的新型介孔分子筛.利用异丙苯的裂解反应、苯和1十二烯烃的烷基化反应,评价了其对大分子的酸催化活性,并与常规介孔材料MCM-41进行了比较.在350℃时,所合成的介孔材料和常规介孔材料MCM-41对异丙苯的裂解转化率分别为68.98%和48.80%.在210℃苯和1十二烯烃的烷基化反应时,所合成的介孔材料和MCM41对1十二烯烃的转化率分别约为95.20%和86.89%,产物直链烷基苯的选择性分别约为88.11%和90.06%.结果表明所合成的介孔材料对大分子的酸催化性能优越于常规介孔材料MCM-41

本文引用格式

刘维桥 , 尚通明 , 李 工 , 吴非克 , 佟惠娟2 , 孙予罕 . 两步晶化法制备介孔材料及其催化性能研究[J]. 无机材料学报, 2010 , 25(3) : 272 -278 . DOI: 10.3724/SP.J.1077.2010.00272

Abstract

A mesoporous material was synthesized by using the precursor of MCM22 zeolite through a twostep synthesis route, and characterized by XRD, N2 physical adsorptiondesorption, TEM, 27Al MAS NMR, IR spectra of pyridine adsorbed methods and so on. It was found that the synthesized sample was not a mixture of microporous zeolite and mesoporous material but a new mesoporous molecular sieve with strong acid sites and good thermal stability. The acid catalytic activity for macromolecules was evaluated and compared with conventional mesoporous material MCM-41 through the cracking reaction of cumene and alkylation reaction of benzene with 1dodecen. The results show that the conversions of cumene cracking at 350℃ over the new mesoporous material and MCM-41 are 68.98% and 48.80%, respectively. For the alkylation reaction of benzene with 1dodecen at 210℃, the conversions of 1dodecen over the new mesoporous materials and MCM-41 are around 95.20% and 86.89%, respectively. The selectivities of linear alkylbenzene over the new mesoporous materials and MCM-41 are around 88.11% and 90.06%, respectively. The results show that the catalytic property of the new mesoporous materials for macromolecules is superior to that of MCM-41.

参考文献

[1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(22): 710-712.

[2]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27):10834-10843.

[3]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(23):548-552.

[4]Wang J Q, Yu N Y, Zheng A, et al. Mesoporous MSU materials functionalized with sulfonic group: A multinuclear NMR and theoretical calculation study. Microporous and Mesoporous Materials, 2006, 89(1/2/3):219-226.

[5]万克树,刘 茜,张存满 (WAN Ke-Shu, et al). 热处理ZSM-5 制备微孔介孔双孔分子筛. 无机材料学报(Journal of Inorganic Materials), 2003, 18(5): 1097-1101.

[6]Zhang C M, Liu Q, Xu Z, et al. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM5 zeolites by heat treatment. Microporous and Mesoporous Materials, 2003, 62(3): 157-163.

[7]Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew. Chem. Int. Ed., 2001, 40(7):1255-1258.

[8]Zhang Z T, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J. Am. Chem. Soc., 2001, 123(21):5014-5021.

[9]Li G, Kan Q B, Wu T H, et al. Synthesis of cubic mesoporous aluminosilicates with enhanced acidity. Studies in Surface Science and Catalysis, 2003, 146: 149-152.

[10]Egeblad K, Kustova M, Klitgaard S K, et al. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Microporous and Mesoporous Materials, 2007, 101(1/2/3):214-223.

[11]Sakthivel A, Huang S J, Chen W H, et al. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem. Mater., 2004, 16(16):3168-3175.

[12]Huang L, Guo P W, Deng Z X, et al. Investigation of synthesizing MCM-41/ZSM-5 composites. Phys. Chem. B, 2000, 104(13): 2817-2823.

[13]Prokesova P, Mintova S, Cejka J. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Mieroporous and Mesoporous Materials, 2003, 64(1/2/3): 165-174.

[14]Naik S P, Chiang A S T, Thompson R W, et al. Mesoporous silica with shortrange MFI structure. Mieroporous and Mesoporous Materials, 2003, 60(3): 213-224.

[15]Corma A, Corell C, PerezPariente J. Synthesis and characterization of the MCM-22 zeolite. Zeolites, 1995, 15(1):2-8.

文章导航

/