研究论文

LiFeP0.95B0.05O4-δ/C的制备及电化学性能研究

  • 任兆刚 ,
  • 瞿美臻 ,
  • 于作龙
展开
  • 1. 中国科学院 成都有机化学研究所, 成都 610041; 2. 中国科学院 研究生院, 北京100049

收稿日期: 2009-06-29

  修回日期: 2009-09-21

  网络出版日期: 2010-03-20

Synthesis and Electrochemical Properties of LiFeP0.95B0.05O4-δ/C Cathode Materials

  • REN Zhao-Gang ,
  • QU Mei-Zhen ,
  • YU Zu-Long
Expand
  • 1. Chengdu Organic Chemical Institute of Chinese Academy of Sciences, Chengdu 610041, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2009-06-29

  Revised date: 2009-09-21

  Online published: 2010-03-20

摘要

以柠檬酸为螯合剂和碳源, 采用溶胶凝胶法合成了B在P位掺杂的LiFeP0.95B0.05O4-δ/C复合材料. 通过XRD、CV、恒流充放电测试等手段对晶体结构和电化学性能进行研究. 结果表明, 复合材料具有单一的橄榄石型晶体结构, B在P位掺杂可提高材料的导电性能, 降低电极极化, 能有效改善材料的循环性能和高倍率性能. 650℃下合成的LiFeP0.95B0.05O4-δ/C复合材料在0.2、5、10C的首次放电比容量分别为149.3、123.4和112.1mAh/g, 其容量保持率分别为99.3%(0.2C, 20次)、91.65%(5C, 150次)和92.9%(10C, 150次), 不同倍率下持续充放电30次后, 0.2C放电容量仍能恢复至初始值.

本文引用格式

任兆刚 , 瞿美臻 , 于作龙 . LiFeP0.95B0.05O4-δ/C的制备及电化学性能研究[J]. 无机材料学报, 2010 , 25(3) : 230 -234 . DOI: 10.3724/SP.J.1077.2010.00230

Abstract

B-doped LiFePO4 in P-site, LiFeP0.95B0.05O4-δ/C composite materials were synthesized in flowing Ar atmosphere by solgel method, using citric acid as chelating agent and carbon source. Samples were characterized by X-ray diffraction and cyclic voltammetry, and their electrochemical performances were investigated by galvanostatic charge/discharge tests in terms of cycling performance and rate capability.The results show that the samples have wellregulated olivinetype structures without any impurity peaks while B-doping improves the conductivity of composite materials and decreases the polarization of electrode, and enhances the cycling performance and rate capability effectively. The discharge capacities of LiFeP0.95B0.05O4-δ/C synthesized at 650℃ are 149.3, 123.4 and 112.1 mAh/g at the rates of 0.2C, 5C and 10C, with retention ratio of 99.3% after 20 cycles at the rate of 0.2C, 91.65% after 150 cycles at the rate of 5C and 92.9% after 150 cycles at the rate of 10C, respectively. After continuous 30 cycles at different rates of 0.2, 1, 3, 5 and 10C, the discharge capacity of 0.2C can reconvert to the previous value.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.

[2]唐致远, 高 飞, 薛建军(TANG ZhiYuan, et al). Li 0.97+δ Ti 0.03Fe 0.97 Mn 0.03 PO4/C复合材料的制备及其电化学性能研究.无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 295-300.

[3]Kim D K, Park H M, Jung S J, et al. Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. Journal of Power Sources, 2006, 159(1): 237-240.

[4]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new lowcost aqueous precipitation technique. Journal of Power Sources, 2003, 119-121: 247-251.

[5]Singhal A, Skandan G, Amatucci G, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources, 2004, 129(1): 38-44.

[6]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters, 2001, 4(10): 170-172.

[7]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 2001, 97-98: 503-507.

[8]Dominko R, Gaberscek M, Drofenik J, et al. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709-3716.

[9]Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of Power Sources, 2007, 163(2): 1064-1069.

[10]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphoolivines as lithium storage electrodes. Nature Materials, 2002, 1(2): 123-128.

[11]Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and Solid State Letters, 2003, 6(12): 278-281.

[12]Barker J, Saidi M Y, Swoyer J L. Lithium iron [Ⅱ] phospho-olivines prepared by a novel carbonthermal reduction method. Electrochemical and Solid State Letters, 2003, 6(3): 53-55.

[13]Yang M R, Ke W H. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M Mg 2+, Ni 2+, Al 3+, or V 3+) as cathode materials for lithiumion cells. Journal of the Electrochemical Society, 2008, 155(10): 729-732.

[14]Hong J, Wang C S, Kasavajjula U. Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries. Journal of Power Sources, 2006, 162(2): 1289-1296.

[15]周 鑫, 赵新兵, 余红明, 等 (ZHOU Xin, et al). F掺杂LiFePO4/C的固相合成及电化学性能.无机材料学报(Journal of Inorganic Materials), 2008, 23(3): 587-591.

[16]张玉荣, 王文继(ZHANG YuRong, et al). 锂离子电池正极材料Li 2+2x Ti 1-x Cux(NbO4)2的研究. 无机材料学报(Journal of Inorganic Materials), 2004, 19(2): 349353.

[17]Legagneur V, An Y, Mosbah A, et al. LiMBO3 (MMn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics, 2001, 139(1/2): 37-46.

[18]Dong Y Z, Zhao Y M, Shi Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material. Electrochimica Acta, 2008, 53(5): 2339-2345.

[19]谢 辉, 周震涛(XIE Hui, et al). 高温固相还原法合成LiFePO4/C正极材料及其电化学性能. 无机材料学报(Journal of Inorganic Materials), 2007, 22(4): 631-636.

[20]张自禄, 卢嘉春, 李雪松, 等. LiFePO4的蔗糖改性研究. 电池, 2007, 37(1): 3-5.

[21]Franger S, Le C F, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochemical and Solid State Letters, 2002, 5(10): 231-233.

文章导航

/