研究论文

水热合成的纳米γ-AlOOH的热分解动力学

  • 杨 琪 ,
  • 胡文彬
展开
  • (1. 上海工程技术大学 材料工程学院, 上海 201620; 2. 上海交通大学 金属基复合材料国家重点实验室, 上海 200240)

收稿日期: 2009-05-03

  修回日期: 2009-06-18

  网络出版日期: 2010-01-24

Thermal Decomposition Kinetics of γ-AlOOH Nanocrystalline Prepared by Hydrothermal Method

  • YANG Qi ,
  • HU Wen-Bin
Expand
  • (1. Materials Engineering College, Shanghai University of Engineering Science, Shanghai 201620, China; 2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2009-05-03

  Revised date: 2009-06-18

  Online published: 2010-01-24

摘要

以氯化铝、氢氧化钠为原料, 在水热条件下制备的纳米γ-AlOOH为宽度10~30nm、 长度100~300nm、 长径比5~15的条状物. 由于纳米γ-AlOOH比表面积很大, 表面羟基的作用不能忽略不计, 因此纳米γ-AlOOH的热分解过程表现出不同的特征, 表面羟基即化学吸附水脱出过程应作为单独的过程对待. 纳米γ-AlOOH的热分解过程分为4个阶段:物理吸附水的脱出; 化学吸附水的脱出; 结构水脱出并转变为氧化铝中间相; 氧化铝中间相中残留羟基的脱出. 4个阶段的激活能E分别为:-1.21、-16.57、-167.62和-7.61kJ/mol.

本文引用格式

杨 琪 , 胡文彬 . 水热合成的纳米γ-AlOOH的热分解动力学[J]. 无机材料学报, 2010 , 25(1) : 96 -100 . DOI: 10.3724/SP.J.1077.2010.00096

Abstract

γ-AlOOH nanocrystaline with width of 10-30nm, length of 100-300nm and aspect ratio of 5-15 were prepared under hydrothermal condition by using aluminum chloride and sodium hydroxide as starting materials. Because of high proportion surface hydroxyl, the thermal decomposition of γ-AlOOH nanocrystalline demonstrates different features, and desorption of surface hydroxyl or chemisorbed water should be treated as separate stage. The thermal decomposition of γ-AlOOH nanocrystalline should be divided to four stages: 1) desorption of physisorbed water; 2) desorption of chemisorbed water; 3) desorption of molecular water and conversion into transition alumina; 4) desorption of residual hydroxyl in transition alumina. And the activation energies of the four stages are -1.21,-16.57,-167.62 and -7.61kJ/mol, respectively.

参考文献

[1]Biamino S, Fino P, Pavese M, et al. Ceram. Int., 2006, 32(5): 509-513.
[2]O Y T, Kim S W, Shin D C. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 313-314: 415-418.
[3]Mazloumi M, Arami H, Khalifehzadeh R, et al. Mater. Res. Bull., 2007, 42(6): 1004-1009.
[4]Sharifi E M, Karimzadeh F, Enayati M H. J. Alloy. Compd., 2009, 482(1/2): 110-113.
[5]Rico A, Rodriguez J, Otero E, et al. Wear, 2009, 267(5-8): 1191-1197.
[6]Hou H W, Xie Y, Yang Q, et al. Nanotechnology, 2005, 16(6): 741-745.
[7]Li Y Y, Liu J P, Jia Z J. Mater. Lett., 2006, 60(29/30): 3586-3590.
[8]Chen X Y, Lee S W. Chem. Phys. Lett., 2007, 438(4/5/6): 279-284.
[9]Okada K, Nagashima T, Kameshima Y, et al. J. Colloid. Interf. Sci., 2002, 253(2): 308-314.
[10]Tsukada T, Segawa H, Yasumori A, et al. J. Mater. Chem., 1999, 9(2): 549-553.
[11]Zeng W M, Gao L, Guo J K. Nanostructured Materials. 1998, 10(4): 543-550.
[12]Ramanathan S, Roy S K, Bhat R, et al. J. Alloy. Compd., 1996, 243(1/2): 39-44.
[13]Sarikaya Y, Sevin ì, Akin M. Powder Technol., 2001, 116(1): 109-114.
[14]冯仰婕, 陈 炜, 邹文樵.华东化工学院学报, 1991, 17(5): 591-599.
[15]景殿策, 王宝和, 张 伟,等. 中国粉体技术, 2006,12(5): 24-27.
文章导航

/