研究论文

纳米/微米CaB6烧结体的形貌组织和力学性能

  • 张 琳 ,
  • 闵光辉 ,
  • 于化顺
展开
  • (山东大学 1. 材料液固结构演变与加工教育部重点实验室; 2.机械工程博士后科研流动站, 济南 250061)

收稿日期: 2009-04-27

  修回日期: 2009-06-30

  网络出版日期: 2010-01-24

Morphology Characteristics and Mechanical Properties of Nano/Micron Calcium Hexaboride Sintered Body

  • ZHANG Lin ,
  • MIN Guang-Hui ,
  • YU Hua-Shun
Expand
  • (1. Key Laboratory for LiquidSolid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China; 2. Mechanical Engineering Postdoctoral Research Station, Shandong University, Jinan250061, China)

Received date: 2009-04-27

  Revised date: 2009-06-30

  Online published: 2010-01-24

摘要

采用真空热压工艺, 在烧结温度1750℃、烧结压力32MPa、保温时间5min的工艺条件下制备了添加不同量纳米六硼化钙(CaB6)粉末的微米烧结体, 研究了纳米粒子含量对CaB6烧结体形貌组织和力学性能的影响. 纳米粉末加入量为10wt%纳米/微米复合陶瓷的致密度和力学性能最佳, 硬度、弯曲强度和断裂韧性分别为92.6 HRA、331.7MPa和3.06MPa·m1/2, 优于微米烧结体和添加镍作为烧结助剂的烧结体. 纳米粒子对微米颗粒晶界的填充和在复合烧结体中形成的“内晶型”晶粒结构是提高复合陶瓷致密度和力学性能的主要原因.

本文引用格式

张 琳 , 闵光辉 , 于化顺 . 纳米/微米CaB6烧结体的形貌组织和力学性能[J]. 无机材料学报, 2010 , 25(1) : 87 -90 . DOI: 10.3724/SP.J.1077.2010.00087

Abstract

Nano/Micron Calcium Hexaboride (CaB6) composite ceramics with different CaB6 nanopowder additions were prepared under 1750℃, 32MPa for 5min in vacuum. Influences of CaB6 nanopowders on morphology and mechanical properties of sintered bodies were investigated. Composite ceramic with 10wt% CaB6 nanopowder addition has the highest compactness degree and mechanical properties, whose hardness, bending strength and fractural toughness are 92.6 HRA, 331.7MPa and 3.06MPa·m1/2, respectively, better than those of CaB6 ceramics without nanopowder adding or those of reinforced by Ni as sintering additive. The proper amount of nano-particles filled in the micron grain boundaries and the formation of “inner crystal” result in the improvement of compactness and mechanical properties for the CaB6 sintered body.

参考文献

[1]Paderno A N, Paderno Yu B, Martynenko A N, et al. Soviet Powder Metallurgy and Metal Ceramics, 1992, 31(10): 863-866.
[2]Ripplinger H, Schwarz K, Blaha P. Journal of Solid State Chemistry, 1997, 133(1): 51-54.
[3]曹明贺, 孙越魁, 蒋 军, 等(CAO Ming-He, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21(3): 640-644.
[4]Tromp H J, Gelderen P V, Kelly P J, et al. Physical Review Letters, 2001, 87(1): 016401-1-4.
[5]Vonlanthen P, Felder E, Degiorgi L, et al. Physical Review B, 2000, 62(15): 10076-10082.
[6]Vonlanthen P, Felder E, Wlti Ch, et al. Physica B, 2000, 284-288: 1361-1362.
[7]Serebryakova T I, Martynenko E N. Powder Metallurgy and Metal Ceramics, 1997, 36(11/12): 579-583.
[8]方 舟, 傅正义, 王 皓, 等. 中国有色金属学报, 2005, 15(11): 1699-1704.
[9]Paderno V N, Volkogon V M, Martynenko N A. Soviet Powder Metallurgy and Metal Ceramics, 1985, 24(7): 543-546.
[10]Serebryakova T I, Ochkas L F, Shaposhnikova T I, et al. Powder Metallurgy and Metal Ceramics, 1998, 37(9/10): 507-511.
[11]Yang L X, Min G H, Yu H S, et al. Ceramics International, 2005, 31(2): 271-276.
[12]Zhang L, Min G H, Yang L X, et al. Metal Physics and Advanced Technology, 2006, 28(3): 323-329.
[13]靳喜海, 高 濂(JIN Xi-Hai, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16(2): 200-206.
[14]李 理, 杨丰科, 侯耀永. 材料导报, 1996(4): 67-73.
[15]曹永福. 昆明理工大学学报(理工版), 1997, 22(2): 59-65.
文章导航

/