研究快报

利用激光刻蚀技术提高Ba0.5Sr0.5Co0.8Fe0.2O3-δ膜的透氧能力

  • 申梓刚,路朋献,胡 行
展开
  • (1.郑州大学 物理工程学院,郑州450045;2.河南工业大学 材料科学与工程学院,郑州450007)

收稿日期: 2009-07-07

  修回日期: 2009-09-17

  网络出版日期: 2010-02-20

Improving the Oxygen Permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membranes by Laser Ablation

  • SHEN Zi-Gang
Expand
  • (1. School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450045, China; 2. College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450007, China)

Received date: 2009-07-07

  Revised date: 2009-09-17

  Online published: 2010-02-20

摘要

利用激光刻图机对Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO)透氧膜表面进行刻蚀,以提高膜表面的比表面,改善膜的氧表面交换能力,从而达到提高透氧量的目的。研究结果表明,激光刻蚀在膜表面形成宽150µm,深25µm的条纹,可以显著提高膜表面的比表面积。XRD谱显示,激光刻蚀不会引起 BSCFO相结构的变化。透氧量测试表明,激光刻蚀可以增大透氧量,十字交叉双面刻蚀效果更加显著。十字交叉双面刻蚀后,其透氧量比未用激光处理的样品提高了大约34%。

本文引用格式

申梓刚,路朋献,胡 行 . 利用激光刻蚀技术提高Ba0.5Sr0.5Co0.8Fe0.2O3-δ膜的透氧能力[J]. 无机材料学报, 2010 , 15(2) : 221 -224 . DOI: 10.3724/SP.J.1077.2009.09474

Abstract

The surfaces of Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO) membranes were decorated by laser ablation treatment in order to increase the specific surface of the membrane surface, and laser ablation treatment could improve the ability of oxygen surface exchange and enhance the oxygen permeation flux of the membranes. The arc shape stripes with width about 150µm and depth about 25µm increase the specific surface of the membrane surface significantly, which were made by laser ablation treatment. XRD patterns show that the BSCFO phase structure is kept after laser ablation treatment. The oxygen permeation fluxes through the membranes after laser ablation treatment are enhanced, and laser ablation treatment with cross stripes pattern on both sides of the membranes has a signification impact on the oxygen permeation flux. The oxygen permeation flux through the membrane with cross stripes pattern on both sides is 34% higher than that through membranes without laser ablation treatment.

参考文献

[1] Vente Jaap F, Haije Wim G, Rak Zbigniew S, Performance of functional perovskite membranes for oxygen production, Journal of Membrane Science, 2006, 276(1/2): 178–184
[2] TU H Y, Takeda Y, Imanishi N, et al. Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 1999, 117(3/4): 277–281.
[3] Hu Jie, Xing Tianlai, Jia Qingchao, et al. Methane partial oxidation to syngas in YBa2Cu3O7−x membrane reactor, Applied Catalysis A: General, 2006, 306 :29–33
[4] FAN Chuan-Gang, HUANG Xiang-Xian, LIU Wei, et al. Preparation and Oxygen Permeation for SrCo0.8Fe0.2O3-δ Tubular Asymmetric Membrane. Journal of Inorganic Materials,2008, 23(6) :1221-1224.
[5] Lee T H, Yang Y L, Jacobson A J, et al. Oxygen permeation in SrCo0.8Fe0.2O3-δ membranes with porous electrodes, Solid State Ionics, 1997, 100(1/2): 77-85.
[6] Shao Zongping,Yang Weishen,Cong You, et al. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion , Journal of Membrane Science, 2000, 172(1/2): 177-188.
[7] Kim S, Yang Y L, Christoffersen R, et al. Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo0.5O3.25-δ. Solid State Ionics, 1998, 109(3/4):187-196.
[8]Teraoka Y, Zhang H M, Furukawa S, et al. Oxygen permeation through perovskite-type oxides, Chemistry Letters, 1985, 14(11): 1743 – 1746.
[9]Bouwmeester H J M, Kruidhof H, Burggraaf A J, Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics, 1994,72(2) :185-194.
[10]Sunarsoa J, Baumann S, Serra J.M, et al.. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation , Journal of Membrane Science, 2008, 320(1/2): 13–41.
[11]Wang Yingfang, Hao Haoshan, Jia Jianfeng, et al. Improving the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3 membranes by a surface coating layer of GdBaCo2O5. Journal of European Ceramic Society, 2008, 28(19): 3125–3130.
[12]Qi X, Akin F T, Lin Y S. Ceramic–glass composite high temperature seals for dense ionic-conducting ceramic membranes. Journal of Membrane Science, 2001,193(2): 185–193.
[13]Meriche F, Neiss Clauss E, Kremer R, et al. Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation. Applications of Surface Science, 2007, 254(4) : 1327–1331.
[14] Linde D Von Der, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation, Applications of Surface Science, 2000 , 154–155 : 1–10.
[15] Kusaba H, Shibata Y, Sasaki K, et al. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide, Solid State Ionics ,2006, 177(26-32) :2249–2253
[16] Shao Zongping, Xiong Guoxing , Dong Hui, et al., Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 2001 , 25 (1/2/3):97–116.

文章导航

/