利用激光刻蚀技术提高Ba0.5Sr0.5Co0.8Fe0.2O3-δ膜的透氧能力
收稿日期: 2009-07-07
修回日期: 2009-09-17
网络出版日期: 2010-02-20
Improving the Oxygen Permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membranes by Laser Ablation
Received date: 2009-07-07
Revised date: 2009-09-17
Online published: 2010-02-20
关键词: 透氧膜;激光刻蚀;比表面积;透氧量
申梓刚,路朋献,胡 行 . 利用激光刻蚀技术提高Ba0.5Sr0.5Co0.8Fe0.2O3-δ膜的透氧能力[J]. 无机材料学报, 2010 , 15(2) : 221 -224 . DOI: 10.3724/SP.J.1077.2009.09474
[1] Vente Jaap F, Haije Wim G, Rak Zbigniew S, Performance of functional perovskite membranes for oxygen production, Journal of Membrane Science, 2006, 276(1/2): 178–184
[2] TU H Y, Takeda Y, Imanishi N, et al. Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 1999, 117(3/4): 277–281.
[3] Hu Jie, Xing Tianlai, Jia Qingchao, et al. Methane partial oxidation to syngas in YBa2Cu3O78722;x membrane reactor, Applied Catalysis A: General, 2006, 306 :29–33
[4] FAN Chuan-Gang, HUANG Xiang-Xian, LIU Wei, et al. Preparation and Oxygen Permeation for SrCo0.8Fe0.2O3-δ Tubular Asymmetric Membrane. Journal of Inorganic Materials,2008, 23(6) :1221-1224.
[5] Lee T H, Yang Y L, Jacobson A J, et al. Oxygen permeation in SrCo0.8Fe0.2O3-δ membranes with porous electrodes, Solid State Ionics, 1997, 100(1/2): 77-85.
[6] Shao Zongping,Yang Weishen,Cong You, et al. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion , Journal of Membrane Science, 2000, 172(1/2): 177-188.
[7] Kim S, Yang Y L, Christoffersen R, et al. Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo0.5O3.25-δ. Solid State Ionics, 1998, 109(3/4):187-196.
[8]Teraoka Y, Zhang H M, Furukawa S, et al. Oxygen permeation through perovskite-type oxides, Chemistry Letters, 1985, 14(11): 1743 – 1746.
[9]Bouwmeester H J M, Kruidhof H, Burggraaf A J, Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics, 1994,72(2) :185-194.
[10]Sunarsoa J, Baumann S, Serra J.M, et al.. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation , Journal of Membrane Science, 2008, 320(1/2): 13–41.
[11]Wang Yingfang, Hao Haoshan, Jia Jianfeng, et al. Improving the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3 membranes by a surface coating layer of GdBaCo2O5. Journal of European Ceramic Society, 2008, 28(19): 3125–3130.
[12]Qi X, Akin F T, Lin Y S. Ceramic–glass composite high temperature seals for dense ionic-conducting ceramic membranes. Journal of Membrane Science, 2001,193(2): 185–193.
[13]Meriche F, Neiss Clauss E, Kremer R, et al. Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation. Applications of Surface Science, 2007, 254(4) : 1327–1331.
[14] Linde D Von Der, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation, Applications of Surface Science, 2000 , 154–155 : 1–10.
[15] Kusaba H, Shibata Y, Sasaki K, et al. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide, Solid State Ionics ,2006, 177(26-32) :2249–2253
[16] Shao Zongping, Xiong Guoxing , Dong Hui, et al., Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 2001 , 25 (1/2/3):97–116.
/
〈 | 〉 |