研究论文

热处理对贮氢合金V3TiNi0.56Al0.2电化学性能的影响

  • 余祖孝 ,
  • 李 荣 ,
  • 周上祺 ,
  • 刘守平
展开
  • 1. 四川理工学院 材料与化学工程系,自贡 643000; 2. 重庆师范大学 化学学院,重庆 400047; 3. 重庆大学 材料科学与工程学院,重庆 400044

收稿日期: 2008-03-31

  修回日期: 2008-05-30

  网络出版日期: 2009-01-20

Effects of Heat Treatment on Electrochemical Properties of V3TiNi0.56Al0.2 Hydrogen Storage Alloy

  • YU Zu-Xiao ,
  • LI Rong ,
  • ZHOU Shang-Qi ,
  • LIU Shou-Ping
Expand
  • 1. Material and Chemical Engineering Department,Sichuan University of Science & Engineering,Zigong 643000, China; 2. llege of Chemistry, Chongqing Normal University,Chongqing 400047,China; 3. College of Material Science and Engineering,Chongqing University,Chongqing 400044,China

Received date: 2008-03-31

  Revised date: 2008-05-30

  Online published: 2009-01-20

摘要

用自蔓延高温合成法制备了钒基固溶体贮氢合金V3TiNi0.56Al0.2并进行热处理,通过X射线衍射对合金进行结构表征,并采用模拟电池和循环伏安法对其电化学性能进行研究.结果表明:1173、1573K热处理后,合金中第二相TiNi的衍射强度下降,合金的组织分布显得更为均匀,晶粒变大;热处理后合金充放电循环稳定性及高倍率放电性能得到改善,铸态合金的最大放电容量为350mAh·g-1,热处理合金充放电时最大放电容量大于铸态合金,且循环稳定性有明显的改善,氢在合金中的扩散系数增大,高倍率放电性能较好.

本文引用格式

余祖孝 , 李 荣 , 周上祺 , 刘守平 . 热处理对贮氢合金V3TiNi0.56Al0.2电化学性能的影响[J]. 无机材料学报, 2009 , 24(1) : 157 -160 . DOI: 10.3724/SP.J.1077.2009.00157

Abstract

The hydrogen storage alloy V3TiNi0.56Al0.2 was prepared by self-propagation at high temperature and its structure was characterized by X-ray diffraction. Its electrochemical properties including the activation property, maximum discharge capacity and high rate discharge ability were evaluated after annealed at 1173K and 1573K by model cell and cycling voltammetry. The results show that after annealing, the diffraction intensities for TiNi in the alloy are weaken with the structure distribution of the alloy being more even and the grains of the alloy being bigger. The charge and discharge cycling stability and the high rate discharge of the alloys are improved by annealing. The maximum discharging capacity of the annealed alloy is not lower than that of the as-cast alloy (350mAh/g), while their cycling stability is improved markedly. The hydrogen diffusion coefficient of the alloy is increased as the annealing temperature increasing.

参考文献

1]Koji S, Takuya T, Takahiro K, et al. Materials Transaction, 2002,43(5):1115-1119.
[2]Zhu Y F, Pan H G, Gao M X, et al. International Journal of Hydrogen Energy, 2003, 28(4):389-394.
[3]Okada M, Kuriiwa T, Kamegawa A. Materials Science and Engineering A, 2002, 329-331(7):305-312.
[4]Seo C Y, Kim J H, Lee P S. Journal of Alloys and Compounds, 2003,348(1-2):252-257 .
[5]Li R, Zhou S Q, Chen C G, et al. Acta Physico-Chimica Sinica, 2005,21(7):716-720.
[6]李 荣,周上祺, 梁国明, 等. 化学工程, 2007,35(3):43-46.
[7]李 荣,周上祺, 梁国明, 等. 无机化学学报,2007,23(4):584-588.
[8]李 荣,周上祺, 梁国明, 等. 中国有色金属学报,2007,17(2):222-227.
[9]Tamura T, Tominaga Y, Matsumoto K. Journal of Alloys and Compounds, 2002,330-332(1-2):522-525.
[10]Yuan X X, Xu N X. Journal of Alloys and Compounds, 2001,316(1-2):113-117.
[11]Nakano H, Wakao S, Shimizu T. Journal of Alloys and Compounds, 1997, 253-254(5): 609-612.
文章导航

/