研究论文

高温气-固反应水解制备八面体形四氧化三钴粉末

  • 刘志宏 ,
  • 胡 雷 ,
  • 刘智勇 ,
  • 李启厚
展开
  • 中南大学冶金科学与工程学院, 长沙 410083

收稿日期: 2007-12-13

  修回日期: 2008-03-05

  网络出版日期: 2008-11-20

Synthesis of Microsized Co3O4 Octahedral by High Temperature Gas-solid Hydrolysis

  • LIU Zhi-Hong ,
  • HU Lei ,
  • LIU Zhi-Yong ,
  • LI Qi-Hou
Expand
  • College of Metallurgical Science and Engineering, Central South University, Changsha 410083, China

Received date: 2007-12-13

  Revised date: 2008-03-05

  Online published: 2008-11-20

摘要

提出了一种以CoCl2·xH2O为原料, 高温气-固反应水解制备四氧化三钴粉末的新方法, 实验考察了反应温度、氯化钴结晶水含量及惰性分散介质的添加对产物的影响. 采用X射线衍射、扫描电镜、激光粒度分析对样品的物相、形貌、粒度等进行了表征. 结果表明: 制备的粉末颗粒由{111}晶面所包围, 呈八面体形貌, 粒度在亚微米至微米级; 反应温度越高, 产物粒子的粒径越大; 以CoCl2·2H2O为原料制备的粉末粒径分布范围较窄; 惰性分散介质的添加改善了粉末的单分散性. 简要分析了形成八面体形貌的原因及各因素对粉末形貌与粒度的影响.

本文引用格式

刘志宏 , 胡 雷 , 刘智勇 , 李启厚 . 高温气-固反应水解制备八面体形四氧化三钴粉末[J]. 无机材料学报, 2008 , 23(6) : 1205 -1210 . DOI: 10.3724/SP.J.1077.2008.01205

Abstract

A novel method, involving high temperature gas-solid hydrolysis, was proposed for the preparation of micro-Co3O4 powder. The effects of reaction temperature, crystal water content of CoCl2, the addition of inert dispersate on the product were investigated. The composition,morphology, and particle size of the prepared particle are characterized by X-ray diffraction(XRD), Scanning electronmicroscope(SEM) and Laser particle size analysis. The results indicate that the obtained powder with octahedral crystal structure are surrounded by {111} crystal surfaces. And the size ranges from submicron to micron, the particle size increases with the temperature elevating, the size distribution becomes narrow when CoCl2·2H2O is employed as precursor. The addition of inert dispersate is beneficial to the monodispersity of the obtained powder. The reasons for the formation of octahedral crystal morphology and the influencing factors of the particle size and morphology are also discussed.

参考文献

[1] Wang Y, Fu Z W, Qin Q Z. Thin Solid Films, 2003, 441 (1-2): 19-24.
[2] Liu H C, Shiowkang Yen. Journal of Powder Sources, 2007, 166 (2): 478-484.
[3] Xue L, Zhang C B, He H, et al. Environmental, 2007, 75 (3-4): 167-174.
[4] Liotta L F, Carlo G Di, Pantaleo G, et al. Catalysis Communications, 2007, 8 (3): 299-304.
[5] kulawik J, Szwagierczak D. Journal of the European Ceramic Society, 2007, 27 (5): 2281-2286.
[6] Gaponov A V, Glot A B, Ivon A I, et al. Materials Science and Engineering, 2007, 145 (1-3): 76-84.
[7] Zhao Z W, Guo Z P, Liu H K. Journal of Power Sources, 2005, 147 (1-2): 264-268.
[8] Kim Do Youp, Ju Seo Hee. Journal of Alloys and Compounds, 2006, 417 (1-2): 254-258.
[9] 杨玉英, 胡中爱, 尚秀丽, 等. 西北师范大学学报, 2005, 41 (2): 55-57.
[10] Ribas J, Escuer A, Serra M, et al. Thermochimica Acta, 1986, 102 (15): 125-135.
[11] Dieter Horn, Jens Rieger. Chem. Int. Ed., 2001, 40 (4): 4330-4361.
[12] Wang Z L. J. Phys. Chem. B, 2000, 104: 1153-1175.
[13] Ma X C, Zhang Z D, Li X B, et al. Journal of Solid State Chemistry, 2004, 177 (10): 3824-3829.
[14] Liu X M, Fu S Y, Xiao H M. Materials letters, 2006, 60 (24): 2979-2983.
[15] Hu C Q, Gao Z H, Yang X R, et al. Chemical Physics Letters, 2006, 429 (4-6): 513-517.
[16] Zhang H G, Zhu Q S, Wang Y, et al. Materials Letters, 2007, 61 (23-24): 4508-4511.
[17] Liu X M, Fu S Y, Xiao H M. Journal of Solid State Chemistry, 2007, 180 (2): 461-466.
[18] Cheng Y,Zheng Y H, Wang Y S, et al. Journal of Solid State Chemistry, 2005, 178 (7): 2394-2397.
[19] Zhang Y G, Liu Y, Fu S Q, et al. Materials Chemistry and Physics, 2007, 104 (1): 166-171.
[20] Lian Suoyuan, Wang Enbo, Gao Lei, et al. Materials Letters, 2006, 61 (18): 3893-3896.
[21] Zhao Z W, Guo Z P, Liu H K. Journal of Power Sources, 2005, 147 (1-2): 264-268.
[22] Ke X F, Cao J M, Zheng M B, et al. Materials Letters, 2007, 61 (18): 3901-3903.
[23] Sung Woo Oh, Hyun Joo Bang, Toung Chan Bae, et al. Journal of Power Sources, 2007, 173 (1): 502-509.
文章导航

/