采用凝胶冷冻干燥法, 在--50℃、8Pa的真空度下制备了碱式硝酸钇前驱体. 干燥后前驱体呈疏松片状堆积, 比烘箱干燥样品具有更为清晰的轮廓. 经过1100℃煅烧后, 凝胶冷冻干燥处理的粉体具有较细的颗粒, 颗粒尺寸分布均一, 并且具有较大的比表面积. 该粉体经过干压型, 于1700℃真空保温4h烧结后得到晶粒大小均匀的致密多晶透明陶瓷, 平均晶粒尺寸在40μm左右, 样品相对密度达99.6%. 样品经抛光后可见光400nm波长透过率达60%, 并且在紫外波段也具有类似于氧化钇单晶的高透过率.
The effect of gel-freezing dry method (--50℃, 8Pa) was investigated on drying and dewatering on a yttrium hydroxynitrate precursor. Precursor through gel-freezing dry accumulated softly with a clearer card-like figure than that through traditional oven dry. After calcination at 1100℃, the powder through gel-freezing dry method has finer particles, narrower particle distribution and larger surface area than that through oven dry. After dry process, samples were sintered at 1700℃ for 4h in vacuum, transparent polycrystalline ceramics were produced with uniform rystallines. The mean size of crystallines is around 40μm. Relative density of the transparent ceramic eaches 99.6%. After milling and polishing, samples get a high in-line transmittance of 60% at 400nm wavelength, and it also gets a high in-line transmittance ultraviolet wave band, which is similar to single crystalline yttrium oxide.
[1] Kong J, Tang D Y, Lu J, et al. Optics Letters, 2004, 29 (11): 1212--1214.
[2] Takaichi K, Yagi H, Lu J R, et al. Applied Physics Letters, 2004, 84 (3): 317--319.
[3] Lu J R, Takaichi K, Uematsu T, et al. Japanese Journal of Applied Physics Part2-Letters, 2002, 41 (12A): L1373--L1375.
[4] Yeheskel O, Tevet O. Journal of the American Ceramic Society, 1999, 82 (1): 136--144.
[5] Rhodes W H. Journal of the American Ceramic Society, 1981, 64 (1): 13--19.
[6] Dutta S K, Gazza G E. Materials Research Bulletin, 1969, 4 (11): 791--796.
[7] Greskovich C, Woods K N. American Ceramic Society Bulletin, 1973, 52 (5): 473--478.
[8] Lefever RA, Matsko J. Materials Research Bulletin, 1967, 2 (9): 865--869.
[9] Fagherazzi G, Polizzi S. Journal of Materials Research, 2000, 15 (3): 586--589.
[10] Zhao Y T, Zhang G W, Xia S D, et al. Materials Research Bulletin, 1997, 32 (5): 501--506.
[11] Ikegami T, Li J G, Mori T. Journal of the American Ceramic Society, 2002, 85 (7): 1725--1729.
[12] Sharma P K, Jilavi M H, Nab R, et al. Journal of Materials Science Letters, 1998, 17 (10): 823--825.
[13] Rulison A J, Flagan R C. Journal of the American Ceramic Society, 1994, 77 (12): 3244--3250.
[14] Subramanian R, Shankar P, Kavithaa S, et al. Materials Letters, 2001, 48 (6): 342--346.
[15] Kaygorodov A S, Ivanov V V, Khrustov V R, et al. Journal of the European Ceramic Society, 2007, 27 (2-3): 1165--1169.
[16] Saito N, Matsuda S, Ikegami T. Journal of the American Ceramic Society, 1998, 81 (8): 2023--2028.
[17] Ikesue A, Yoshida K. Journal of the American Ceramic Society, 1998, 81 (8): 2194--2196.
[18] 王介强, 郑少华, 邱云龙, 等(WANG Jie-Qiang, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (6): 1222--1228.
[19] Wen L, Sun X D, Xiu Z M, et al. Journal of the European Ceramic Society, 2004, 24 (9): 2681--2688.