用熔融-淬冷法制备了无稀土掺杂与Dy 3+ (0.04mol%)掺杂Ge30Ga5Se65和0.9Ge30Ga5Se65+0.1CsBr玻璃样品. 采用Judd-Ofelt理论计算了0.9Ge30Ga5Se65+0.1CsBr玻璃样品中Dy3+ 跃迁的强度系数、自发辐射几率与荧光分支比. 为了研究多声子弛豫(MPR)随温度的变化, 测试了Dy3+ 的6H11/2 能级在20~300K温度范围内的荧光寿命, 分析了Ge30Ga5Se65玻璃中声子模式与电子-声子结合强度对Dy3+ 1.72μm处荧光强度和效率的影响. 在硒化物玻璃中引入CsBr使玻璃中形成了Ga--Br键, 有效声子能量降低到268cm-1. 通过计算得到Ge30Ga5Se65与0.9Ge30Ga5Se65+0.1CsBr 样品的电子-声子结合强度分别为0.456与0.048. CsBr的引入降低了电子-声子结合强度. 声子模式与电子-声子结合强度的改变决定了MPR 的变化.
Pure and Dy3+-doped Ge30Ga5Se65 and 0.9Ge30Ga5Se65+0.1CsBr glasses were prepared by conventional melt-quenching method. The intensity parameters, spontaneous emission probability and branching ratio of Dy3+ ions in Ge30Ga5Se65+CsBr glass were calculated by Judd-Ofelt theory. The lifetime of 6H11/2 level at temperatures from 20K to 300K were measured to investigate the temperature dependence of multiphonon relaxation (MPR) rates. The influence of the local phonon mode and electron-phonon (e-p) coupling strength on the 1.72μm fluorescence efficiency of Dy3+-doped
selenide glasses was investigated. The frequency of the phonon vibration is changed to 268cm-1 due to the formation of Ga-Br bonds with the addition of CsBr to selenide glasses. The values of e-p coupling strengths in Ge30Ga5Se65 and 0.9Ge30Ga5Se65+0.1CsBr glasses are 0.456 and 0.048, respectively. It is clear that the e-p coupling strengths decrease considerably with the addition of CsBr to Ge30Ga5Se65 glass. This reduced e-p coupling together with a large change in the local phonon mode result in the change of the MPR rate.
[1] Barnes N P, Rodriguez W J, Walsh B M. J. Opt. Soc. Am. B, 1996, 13 (12): 2872--2882.
[2] Hemmati H. Appl. Phys. Lett., 1987, 51 (8): 564--565.
[3] Riseberg L A, Grandrud W B, Moos H W. Phys. Rev., 1978, 159 (2): 429--434.
[4] Propper D A C.J. Opt. Soc. Amer. B, 1994, 11 (3): 886--888.
[5] Frumarová B, Oswald J, Krecmer P, et al. Opt. Mater., 1996, 6 (3): 217--223.
[6] Tanable S, Hanada T, Watanabe M, et al. J. Am. Ceram. Soc., 1995, 78: 2917--2922.
[7] Schaafsma D T, Shaw L B, Cole B, et al. IEEE Photonics Tech. Lett., 1998, 10: 1548. [8] Schweizer T, Hewak D W, Samson B N, et al. Opt. Lett., 1996, 21: 1594--1596.
[9] Schweizer T, Hewak D W, Samson B N, et al. Journal of Luminescence, 1997, 72-74: 419--421.
[10] Samson B N, Schweizer T, Hewak D W, et al. Opt. Lett., 1997, 22: 703--705.
[11] Su Q, Bin H, Ga L, et al. Journal of Luminescence, 2007, 122-123: 927--930.
[12] Liang X L, Zhu C F, Yang Y X, et al. Journal of Luminescence, 2008, 18: 1162--1164.
[13] Herrmann A, Ehrt D. J. Non-Cryst. Solids, 2008, 354: 916--926.
[14] Němec P, Frumar M. Material Letters, 2008, 62: 2799--2801.
[15] Yang Z Y, Li B T, He F, et al. J. Non-Cryst. Solids, 2008, 354: 1198--1200.
[16] Zhao D, Yang T, Xu Y S, et al. J. Non-Cryst. Solids, 2008, 354: 1294--1297.
[17] Heo J. J. Non-Cryst. Solids, 2007, 21 (11): 1358--1363.
[18] Shin Y B, Heo J. J. Non-Cryst. Solids, 1999, 253 (2): 23--29.
[19] Ma H, Zhang X H, Guimond Y, et al. J. Non-Cryst. Solids, 1999, 257 (4): 165--169.
[20] Shin Y B, Heo J, Kim H S. J. Mater. Res., 2001, 16: 1318--1324.
[21] Liu Zhuping, Dai Shixun, Hu Lili, et al. J. Lasers, 2001, A28 (5): 467--470.
[22] Judd B R. Phys. Rev., 1962, 12 7(3): 750--71.
[23] Wood D L, Tauc J. Phys. Rev. B, 1972, 5 (8): 3144--3151.
[24] Miyakawa T, Dexter D L. Phys. Rev. B, 1970, 1 (7): 2961--2969.
[25] Choi Y G. J. Non-Cryst. Solids, 2007, 353 (18-21): 1930--1935.
[26] Tverjanovich A, Tverjanovich Yu S, Loheider S. J. Non-Cryst. Solids, 1996, 208 (1-2): 49--55.
[27] Layne C B, Lowdermilk H W, Weber M J. Phys. Rev. B, 1977, 16 (1): 10--20.