研究论文

高能球磨Al-Y2O3粉体固相反应制备YAG陶瓷的研究

  • 李长青 ,
  • 张明福 ,
  • 左洪波 ,
  • 韩杰才 ,
  • 孟松鹤
展开
  • 哈尔滨工业大学 复合材料与结构研究所, 哈尔滨 150001

收稿日期: 2007-12-20

  修回日期: 2008-02-26

  网络出版日期: 2008-11-20

Investigation of High-energy Ball Milling of Al-Y2O3 Mixtures and Solid-state Reaction Synthesis of YAG Ceramics

  • LI Chang-Qing ,
  • ZHANG Ming-Fu ,
  • ZUO Hong-Bo ,
  • HAN Jie-Cai ,
  • MENG Song-He
Expand
  • Center for Composite materials, Harbin Institute of Technology, Harbin 150001, China

Received date: 2007-12-20

  Revised date: 2008-02-26

  Online published: 2008-11-20

摘要

用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.

关键词: 高能球磨; Al; Y2O3; DTA-TG; YAG

本文引用格式

李长青 , 张明福 , 左洪波 , 韩杰才 , 孟松鹤 . 高能球磨Al-Y2O3粉体固相反应制备YAG陶瓷的研究[J]. 无机材料学报, 2008 , 23(6) : 1131 -1134 . DOI: 10.3724/SP.J.1077.2008.01131

Abstract

YAG ceramics were fabricated by solid-state reaction method using high pure powders (Al, Y2O3) as
starting materials. YAG ceramics were fabricated by vacuum sintering YAG compacts which were calcined from high energy milled Al-Y2O3 powders. Al-Y2O3 powders as-milled were analyzed by DTA-TG, Al-Y2O3 powders, YAG powder and YAG ceramics were characterized by XRD and SEM. The results show that Al powders in Al-Y2O3 powders oxide intensively at 569℃, and continue to react with Y2O3, YAM phase appears after calcined at 600℃, YAP phase emerges with calcination temperature increasing, YAG phase is formed at 1200℃.YAG ceramics are fabricated from YAG compact by vacuum sintering at 1750℃ for 2h, the relative density of YAG ceramics is about 98.6%, the YAG grains grow uniformly with average size of 8-10μm tested by SEM.

Key words: high energy milling; Al; Y2O3; DTA-TG; YAG

参考文献

[1] Matsubara I, Paranthaman M, Allison S W, et al. Mater. Res. Bull., 2000, 35 (2): 217--224.
[2] 刘得利.陶瓷工程, 1999, 33 (1): 24--25.
[3] Ikesue Akio, Toshiyuki Kinoshita, Kiichiro Kamata, et al. J. Am. Ceram. Soc., 1995, 78 (4): 1033--1040.
[4] Patankar S N, Zhang D, Adam G, et al. J. Alloy Compd., 2003, 353 (1-2): 307--309.
[5] Michael Veith, Sanjay Mathur, Aivaras Kareiva, et al. J. Mater. Chem., 1999, 9 (3): 3069--3079.
[6] Li Ji-Guang, Takayasu Ikegami, Lee Jong-Heun, et al. J. Eur. Ceram. Soc., 2000, 20 (14): 2395--2405.
[7] Yukiya Hakuta, Tsukasa Haganuma, Kiwamu Sue, et al. Mater. Res. Bull., 2003, 38 (7): 1257--1265.
[8] Kong L B, Ma J, Huang H. Mater. Lett., 2002, 56 (3): 344--348.
[9] Ikesue Akio, Furusato Isao. J. Am. Ceram. Soc., 1995, 78 (1): 225--228.
[10] Wen Lei, Sun Xudong, Xiu Zhimeng, et al. J. Eur. Ceram. Soc., 2004, 24 (9): 2681--2688.
[11] Saif M T A, Zhang S, Haque A, et al. Acta Materialia, 2002, 50 (11): 2779--2786.
[12] Ealet B, Elyakhloufi M H, Gillet E, et al. Thin Solid Films, 1994, 250 (1-2): 92--100.
文章导航

/