研究论文

ZnGeP2晶体点缺陷的研究进展

  • 朱崇强 ,
  • 杨春晖 ,
  • 王猛 ,
  • 夏士兴 ,
  • 马天慧 ,
  • 吕维强
展开
  • 哈尔滨工业大学 应用化学系, 哈尔滨 150001

收稿日期: 2008-01-15

  修回日期: 2008-03-18

  网络出版日期: 2008-11-20

Developments of Point Defects in ZnGeP2 Crystals

  • ZHU Chong-Qiang ,
  • YANG Chun-Hui ,
  • WANG Meng ,
  • XIA Shi-Xing ,
  • MA Tian-Hui ,
  • LU Wei-Qiang
Expand
  • Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China

Received date: 2008-01-15

  Revised date: 2008-03-18

  Online published: 2008-11-20

摘要

ZnGeP2晶体是具有重要应用背景的红外非线性光学材料. 晶体中的点缺陷严重限制了ZnGeP2晶体的应用发展. 本工作介绍了ZnGeP2晶体点缺陷的最新研究进展情况. 首先, 利用电子顺磁共振技术研究了ZnGeP2晶体的点缺陷. 主要存在缺陷是受主缺陷V-Zn及施主缺陷V0P和Ge+Zn, 其相应的缺陷能级分别为E(V-Zn)=EC-(1.02±0.03)eV, E(V0P)=EV+(1.61±0.06)eV和E(Ge+Zn)=EV+(1.70±0.03)eV. 对晶体作了电子照射及高温退火等处理后, 又分别发现了两种缺陷V 3-Ge和VPi. 其次, 利用全势能线性muffin-tin轨道组合法模拟研究了ZnGeP2晶体的点缺陷. 主要存在缺陷及缺陷能级的计算结果与实验结果基本一致, 但由于理论模拟与实际情况还存在差距, 有些计算结果与实验结果相矛盾. 因此, 将实验与理论有机结合研究晶体的点缺陷是今后研究的重点.

本文引用格式

朱崇强 , 杨春晖 , 王猛 , 夏士兴 , 马天慧 , 吕维强 . ZnGeP2晶体点缺陷的研究进展[J]. 无机材料学报, 2008 , 23(6) : 1089 -1095 . DOI: 10.3724/SP.J.1077.2008.01089

Abstract

ZnGeP2 is a nonlinear optical material which is useful for important applications in the infrared region. A serious limitation to the development of ZnGeP2-based applications is the presence of point defects in the crystals. The latest development of the point defects in ZnGeP2 is summarized in the paper. Firstly, the point defects are studied by electron paramagnetic resonance technique. The dominant point defects in ZnGeP2 are V-Zn acceptor, V0P and Ge+Zn donors, and their energy levels are E(V-Zn)=EC-(1.02±0.03)eV, E(V0P)=EV+(1.61±0.06)eV and
E(Ge+Zn)=EV+(1.70±0.03)eV. In addition, the two defects V-3Ge and VPi are observed in electron irradiated and annealed ZnGeP2, respectively. Secondly, the point defects are studied simulatively by full-potential linearized muffin-tin orbital method. The results of the dominant defects and their energy levels are in agreement with the experimental evidences. However, there still exists difference between the theoretical simulation and the actual situation, some results are discrepant with the experimental conclusions. Therefore, it is important to investigate point defects by the combination of experiment and theory.

参考文献

[1] Zawilski K T, Setzler S D, Schunemann P G, et al. Proceedings of SPIE, 2005, 5991: 599104-1-13.
[2] Verozubova G A, Gribenyukov A I, Mironov Yu P. Inorganic Materials, 2007, 43 (10): 1164--1169.
[3] Dimmock J O, Madarasz F L, Dietz N, et al. Applied Optics, 2001, 40 (9): 1438--1441.
[4] Dietz N, Tsveybak I, Ruderman W, et al. Applied Physics Letters, 1994, 65 (22): 2759--2761.
[5] Boyd G D, Buehler E, Storz F G. Applied Physics Letters, 1971, 18 (7): 301--304.
[6] Ruderman W, Zwieback I. Materials Research Society Symposium Proceedings, 2000, 607: 361--372.
[7] Schunemann P G, Schepler K L, Budni P A. Materials Research Society Bulletin, 1998, 23: 45--49.
[8] Henriksson M, Tiihonen M, Pasiskevicius V, et al. Optics Letters, 2006, 31 (12): 1878--1880.
[9] Barnes N P, Murray K E, Jani M G, et al. Journal of the Optical Society of America B, 1998, 15 (1): 232--238.
[10] Boyd G D, Bridges T J, Patel C K N, et al. Applied Physics Letters, 1972, 21 (11): 553--555.
[11] Mason P D, Jackson D J, Gorton E K. Optics Communications, 1994, 110: 163--166.
[12] Setzler S D, Schunemann P G, Pollak T M, et al. Journal of Applied Physics, 1999, 86 (12): 6677--6681.
[13] Schunemann P G, Budni P A, Pomeranz L, et al. Advanced Solid State Lasers, 1997, 10: 253--255.
[14] Verozubova G A, Gribenyukov A I, Korotkova V V, et al. Materials Science and Engineering B, 1997, 48: 191--197.
[15] Hobgood H M, Henningsen T, Thomas R N, et al. Journal of Applied Physics, 1993, 73 (8): 4030--4037.
[16] Hopkins F K. Laser Focus World, 1995, 31 (7): 87--93.
[17] Moldovan M, Stevens K T, Halliburton L E, et al. Materials Research Society Symposium Proceedings, 2000, 607: 445--450.
[18] Stevens K T, Setzler S D, Halliburton L E, et al. Materials Research Socielty Symposium Proceedings, 1998, 484: 549--554.
[19] Giles N C, Bai L H, Garces N Y, et al. Proceedings of SPIE, 2004, 5337: 11--21.
[20] McCrae J E, Gregg M R, Hengehold R L, et al. Applied Physics Letters, 1994, 64 (23): 3142--3144.
[21] Sodeika A, Silevicius A Z, Januskevcius Z, et al. Physica Status Solidi(a), 1982, 69 (2): 491--495.
[22] Schunemann P G, Pollak T H. Materials Research Society Bulletin, 1998, 23: 23--27.
[23] Schunemann P G, Drevinsky P J, Ohmer M C, et al. Materials Research Society Symposium Proceedings, 1995, 354: 729--734.
[24] Schunemann P G, Drevinsky P J, Ohmer M C. Materials Research Society Symposium Proceedings, 1995, 354: 579--583.
[25] Jiang X S, Miao M S, Lambrecht W R L. Physical Review B, 2005, 71 (20): 205212-1--12.
[26] Jiang X S, Miao M S, Lambrecht W R L. Physical Review B, 2006, 73 (19): 193203-1--4.
[27] Shimony Y, Kimmel G, Raz O, et al. Journal of Crystal Growth, 1999, 198/199: 583--587.
[28] Vaipolin A A. Solid State Physics, 1973, 15: 1430--1435.
[29] Xing G C, Bachmann K J, Posthill J B. Applied Physics Letters, 1990, 56 (3): 271--273.
[30] Hofmann D M, Romanov N G, Gehlhoff W, et al. Physica B, 2003, 340-342: 978--981.
[31] Lind M D, Grant R W. Journal of Chemical Physics, 1973, 58 (1): 357--362. [32] Kiel A. Solid State Communications, 1974, 15 (6): 1021--1024.
[33] Rakowsky M H, Kuhn W K, Lauderdale W J, et al. Applied Physics Letters, 1994, 64 (13): 1615--1617.
[34] Halliburton L E, Edwards G J, Scripsick M P, et al. Applied Physics Letters, 1995, 66 (20): 2670--2672.
[35] Giles N C, Halliburton L E, Schunemann P G, et al. Applied Physics Letters, 1995, 66 (14): 1758--1760.
[36] Setzler S D, Giles N C, Halliburton L E, et al. Applied Physics Letters, 1999, 74 (9): 1218--1220.
[37] Gehlhoff W, Pereira R N, Azamat D, et al. Physica B, 2001, 308-310: 1015--1019.
[38] Gehlhoff W, Azamat D, Hoffmann A. Physica Status Solidi(b), 2003, 235 (1): 151--154.
[39] Gehlhoff W, Azamat D, Hoffmann A, et al. Journal of Physics and Chemistry of Solids, 2003, 64: 1923--1927.
[40] Hohenberg P, Kohn W. Physical Review B, 1964, 136 (3): 864--871.
文章导航

/