十字形碳化硅纤维的制备与微波电磁特性
Preparation and Microwave Electromagnetic Properties of Cross-shaped SiC Fibers
(State Key Lab of New Ceramic Fibers and Ceramic Matrix Composites, National University of Defense Technology, Changsha 410073, China)
Received date: 2009-08-26
Revised date: 2009-10-10
Online published: 2010-04-27
通过先驱体法制备出十字形SiC纤维, 纤维外接圆直径为34μm左右, 纤维叶片长度为12μm左右, 宽度为8μm左右。使用同轴环方法测试了十字形SiC纤维的复介电常数和复磁导率, 测试表明纤维是介电损耗材料, 纤维的介电常数实部(ε′)、虚部(ε″)和介电损耗角正切值(tanδ=ε″/ε′)分别为2. 77~7. 93、1. 38~6. 41和0. 49~0. 81, 磁导率实部(μ′)和虚部(μ″)分别为0. 96~1. 12和-0. 05~0. 08。在2~18GHz频率范围内, 纤维/石蜡复合材料的反射率衰减大于10dB的频率为9. 12~18GHz, 最大衰减为28. 47dB, 对应频率为12GHz。反射率衰减大于10dB的频宽为8. 88GHz。
关键词: SiC纤维; 十字形; 微波; 复介电常数和复磁导率; 制备
刘旭光 , 王应德 , 王 磊 , 薛金根 , 蓝新艳 . 十字形碳化硅纤维的制备与微波电磁特性[J]. 无机材料学报, 2010 , 25(4) : 441 -444 . DOI: 10.3724/SP.J.1077.2009.09601
Cross-shaped SiC fibers were prepared from precursor polymer. The diameter of fiber’s circumcircle is about 34 μm, the length of vane is about 12μm, and the width of vane is 8μm. The complex permittivity and permeability of cross-shaped SiC fibers were measured by the coaxial line method at 2-18 GHz. The ε′, ε″, μ′, μ″ and tanδ of cross-shaped SiC fibers/paraffin wax composites are 2.77-7.93, 1.38-6.41, 0.96-1.12, -0.05-0.08, 0.49-0.81, respectively. Cross-shaped SiC fiber is a kind of dielectric loss materials. The reflection loss of the composites is below -10 dB at 9.12-18 GHz in the range of 2-18 GHz, and the minimum value is -28.47 dB at 12 GHz. The bandwidth corresponding to the reflection loss below -10 dB is 8.88 GHz.
[1] Kim Moon Suk, Min Eui Hong, Koh Jae Gui. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. Journal of Magnetism and Magnetic Materials, 2009, 321(6): 581-585.
[2] Rasmussen G L, Dickson M E, Miller R J, et al. Particulates of Controlled Dimension. US Patent, 6699579, 2004-03-02.
[3] Boyer C E III, Borchers E J, Kuo r j, et al. Microwave Absorber Employing Acicular Magnetic Filaments. US patent, 5085931, 1992-02-04.
[4] Lagarkocv A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B, 1996, 53 (10): 6319- 6336.
[5] Wu Mingzhong, He Huahui, Zhao Zhengsheng, et al. Electromagnetic anisotropy of magnetic iron fibers at microwave frequencies. Appl.Phys., 2002,34: 1069-1074.
[6] Fujihara S B, Naito H K, Kimura T S. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol-gel process. Thin Solid Films, 2001, 389(1/2): 227-232.
[7] Liu Jianhua, Sun Jie, Li Songmei, et al. Electromagnetic characteristic of different shape ZnO composite. Journal of Beijing University of Aeronautics Astronautics, 2004, 30(9): 822-825 (in Chinese).
[8] Motojima S, Hishikawa Y, Iwanaga H. Vapor phase preparation and some properties of carbon micro-coils/nano-coils. Recent Res. Devel Mat. Sci., 2002(3): 633-662.
[9] Gurwich Ioseph, Kleiman Moshe, Shiloah Nir. Scattering from a long helix: Theory and simulation. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(8): 1392-1403.
[10] Shen Zengmin, Ge Min, Zhao Donglin. The microwave absorbing properties of carbon microcoils. New Carbon Materials, 2005, 20(4): 289-293 (in Chinese).
[11] Kim Jin-Bong, Lee Sang-Kwan, Kim Chun-Gon. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Composites Science and Technology, 2008, 68(14): 2909-2916.
[12] Zhao Donglin, Shen Zengmin, Chi Weidong. Radar absorption property and mechanism of carbon fiber and carbon fiber composites. New Carbon Materials, 2001, 16(2): 66-72(in Chinese).
[13] Fischbach D B, Lemoine P M, Yen G V. Mechanical properties and structure of a new commercial SiC-type fiber Tyrranno. J. Mater. Sci. , 1988, 23(3): 987-993.
[14] Kumagawa K. Fabrication and mechanical properties of new improved Si-M-C-(O) tyranno fiber. Ceram. Eng. Sci. Proc., 1998, 19(1): 65-72.
[15] Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155–170.
[16] Nozawa T, Hinoki T, Snead L L, et al. Neutron irradiation effects on high-crystallinity and near-stoichiometry SiC fibers and their composites. Journal of Nuclear Materials, 2004, 329–333: 544–548.
[17] Yamauna T, Ishikawa T, Shibuya M. Electromagnetic Wave Absorbing Material. US Patent, 5094907, 1992-03-10.
[18] Yao Yiming, Janis Anna, Klement Uta. Characterization and dielectric properties of β-SiC nanofibres. J. Mater. Sci., 2008, 43(3): 1094-1101.
[19] Wang Yingde, Feng Chunxiang, Wang Juan, et al. Preparation of trilobal SiC fibers with radar-absorbing properties. Acta Materiae Composite Sinica, 2001, 8(1): 42-45(in Chinese).
[20] Wang Y D, Chen Y M, Zhu M F, et al. Development for silicon carbide fibers with trilobal cross section. J. Mater. Sci. Lett,, 2002, 21(4): 349-350.
[21] Liu Xuguang, Wang Yingde, Jiang Yonggang, et al. Preparation and properties of the C-shaped SiC fibers. Rare Metal Materials and Engineering, 2007(s1): 395-398 (in Chinese).
[22] Takeda M, Sakamoto J I, Imai Y, et al. Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM. Comp. Sci. Tech., 1999, 59(6): 813-819.
[23] Ishino K, Narumiya Y. Development of magnetic ferrites: control and application of lossed. Am. Ceram. Soc. Bull., 1987, 66(10): 1469–1471.
[24] Shams Mohammad Hossein, Salehi Seyed Mohammad Ali, Ghasemi Ali. Electromagnetic wave absorption characteristics of Mg–Ti substituted Ba-hexaferrite. Materials Letters, 2008, 62 (10/11): 1731–1733.
/
〈 |
|
〉 |