研究论文

软骨修复用 HA/PU多孔支架材料的制备与表征

  • 董志红 ,
  • 李玉宝 ,
  • 张利 ,
  • 左奕
展开
  • (四川大学纳米生物材料研究中心, 分析测试中心, 成都 610064)

收稿日期: 2006-10-25

  修回日期: 2006-12-22

  网络出版日期: 2007-11-20

Preparation and Characterization of Porous HA/PU Scaffold Material for Soft Bone Repair

  • DONG Zhi-Hong ,
  • LI Yu-Bao ,
  • ZHANG Li ,
  • ZUO Yi
Expand
  • (Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China)

Received date: 2006-10-25

  Revised date: 2006-12-22

  Online published: 2007-11-20

摘要

研制了用于软骨的组织工程的HA/PU多孔支架材料, 采用气体发泡法制备了三维贯通的多孔HA/PU支架材料, 通过XRD、IR对其结构组成进行了分析, 用DSC测量了玻璃化转变温度, 用SEM观察了微观形貌和孔径尺寸, 并计算了孔隙大小和孔隙率的分布. 通过燃烧试验分析了HA/PU复合材料中HA的百分含量, 并对力学性能进行了评估. 结果表明, 多孔HA/PU复合支架材料, 其大小孔道相互贯通, 孔径范围在100~800μm, 大孔中含有微孔, 孔隙率可达到78%~80%, HA含量达到30wt%, 力学强度达到271kPa. 多孔HA/PU复合材料具有一定的弹性, 是一类性能很好的可望用于软骨修复的支架材料.

本文引用格式

董志红 , 李玉宝 , 张利 , 左奕 . 软骨修复用 HA/PU多孔支架材料的制备与表征[J]. 无机材料学报, 2007 , 22(6) : 1255 -1258 . DOI: 10.3724/SP.J.1077.2007.01255

Abstract

Three dimensional and interconnective porous HA/PU scaffold material was prepared for tissue engineering by a gas foaming method, and its structure and composition were analyzed by XRD,IR. Glass transition temperature was measured by DSC curve. The micromorphology and pore size were observed and the pore sizes and distribution were calculated. The content of HA in PU/HA composite and mechanical performance were tested. The results indicate that porous HA/PU composite scaffold has good interconnectivity with typical pore sizes ranging from 100μm to 800μm. Its porosity can reach 78%--80%.When the content of HA in HA/PU composite is 30wt%, the mechanical strength of the HA/PU composite is 271kPa. The porous HA/PU scaffold has good elasticity which is a good potential material for soft bone repair scaffold.

参考文献

[1] Tadashi Kokubo, Hyun-Min Kim, et al. Biomaterials, 2003, 24: 2161--2175.
[2] Ripamonti U, Crooks J, Kirkbride A N. South African Science, 1999, 95 (8): 335. [3] Zdrahala R J, Zdrahala I J. J. Biomater. Appl, 1999, 14: 67--90.
[4] Jianjun Guan, Kazuro L. Fujimoto. Biomaterials, 2005, 26: 3961--3971.
[5] Spaans C J, Belgraver V W, et al. Biomaterials, 2000, 21: 2453--2460.
[6] Wei Jie, Li Yubao. Europe Polymer Journal, 2004, 40: 509--515.
[7] 石桂欣, 王身国, 贝建中. 功能高分子学报, 2001, 14 (1): 7--11.
[8] Michael J. Elwell, Anthony J. Ryan. Polymer, 1996, 37 (8): 1353--1361.
[9] 傅明源, 孙酐经. 聚氨酯弹性体及其应用, 第三版. 北京: 化学工业出版社, 2006. 15--16.
[10] Emel Yilgo, Iskender Yilgor, Ersin Yurtsever. Polymer, 2002, 43: 6551--6559.
[11] Wang C B, Cooper S L. Macromolecules, 1983, 16: 775.
[12] Ashish Aneja, Garth L. Wilkes, Polymer, 2002, (43): 5551--5561.
[13] Yasunaga K, Neff R, Zhang X, et al. Journal of Cellular Plastics, 1996, 32: 427--447.
文章导航

/