研究论文

分散剂CTAB对碳纳米管悬浮液分散性能的影响

  • 肖 奇 ,
  • 王平华 ,
  • 纪伶伶 ,
  • 谭小科 ,
  • 欧阳林莉
展开
  • (中南大学 资源加工与生物工程学院无机材料系, 长沙 410083)

收稿日期: 2006-10-21

  修回日期: 2006-11-24

  网络出版日期: 2007-11-20

Dispersion of Carbon Nanotubes in Aqueous Solution with Cationic Surfactant CTAB

  • XIAO Qi ,
  • WANG Ping-Hua ,
  • JI Ling-Ling ,
  • TAN Xiao-Ke ,
  • OUYANG Lin-Li
Expand
  • (Department of Inorganical Materials, School of Mineral processing and Bioengineering, Central South University, Changsha 410083, China)

Received date: 2006-10-21

  Revised date: 2006-11-24

  Online published: 2007-11-20

摘要

以十六烷基三甲基溴化铵(CTAB)为分散剂, 制备了分散性能良好的碳纳米管悬浮液. 通过测定等温吸附曲线和悬浮液的Zeta电位, 研究了CTAB对碳纳米管表面性质的影响. 结果表明, CTAB的加入使Zeta电位由-29mV变为65mV左右; 等温吸附曲线表明,CTAB在碳纳米管表面为“两阶段吸附”, CTAB浓度为9×10-4 mol·L-1时, 在碳纳米管表面达到饱和吸附. 通过悬浮碳纳米管浓度测定确定了所需最佳CTAB的用量为9×10-4 mol·L-1左右, 同时对CTAB的吸附分散机理进行了分析和讨论.


本文引用格式

肖 奇 , 王平华 , 纪伶伶 , 谭小科 , 欧阳林莉 . 分散剂CTAB对碳纳米管悬浮液分散性能的影响[J]. 无机材料学报, 2007 , 22(6) : 1122 -1126 . DOI: 10.3724/SP.J.1077.2007.01122

Abstract

Stable homogeneous dispersions of carbon nanotubes were prepared by using cetyl trimethyl ammonium bromide (CTAB) as dispersant. Surface chemistry of the carbon nanotube was investigated by measuring isotherm adsorption and Zeta potential. The stabilization mechanism of the carbon nanotubes in aqueous solution of surfactant CTAB was discussed. In the CTAB solutions, the Zeta-potential of carbon nanotube surface progressively increases with increasing the CTAB concentration, in which the Zeta potential of carbon nanotube changes from -29mV to 65mV. The isotherms of CTAB adsorption on carbon nanotubes indicate a two-step mechanism of adsorption, and the isotherms reach the saturation plateau at CTAB concentration of about 9×10-4 mol·L-1. The optimum concentration of CTAB to obtain a stable homogeneous dispersions of carbon nanotubes is about 9×10-4 mol·tL-1.

参考文献

[1] Iijima S. Nature, 1991, 354: 56--58.
[2] Dai Hongjie. Surface Science, 2002, 500: 218--241.
[3] Niyogi S, Hamon M A, Hu H, et al. Acc. Chem. Res., 2002, 35 (12): 1105-1113.
[4] Hone J, Zettl A, Whitney M. Synthetic Metals, 1999, 103: 2498--2499.
[5] Nardelli M B, Roland C, Zhao Q, et al. Carbon, 2000, 38 (11): 1703--1711.
[6] 许龙山, 陈小华, 陈传盛, 等(XU Long-Shan et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 309--314.
[7] Chen Q, Saltiel C, Manickavasagam S, et al. Journal of Colloid and Interface Science, 2004, 280: 91--97.
[8] Ham H T, Choi Y S, Chung I J. Journal of Colloid and Interface Science, 2005, 286: 216--223.
[9] Matarredona O, Rhoads H, Li Z, et al. J. Phys.Chem. B, 2003, 107 (480): 13357--13367.
[10] Islam M F, Rojas E, Bergey D M. Nano Lett., 2003, 3 (2): 269--273.
[11] Vaisman L, Marom G, Wagner H D. Adv. Funct. Mater., 2006, 16 (3): 357--363.
[12] Niyogi S, Hamon M A, Perea D E, et al. Journal of Physical Chemistry B, 2003, 107 (34): 8799--8804.
[13] Jiang Linqin, Gao Lian, Sun Jing. Journal of Colloid and Interface Science, 2003, 260: 89--94.
[14] Bele M, Kodre A, Arcon I, et al. Carbon, 1998, 36 (7): 1207--1212.
文章导航

/