研究论文

基于欧珀模板磁控溅射生长氧化锌薄膜及其光学特性

  • 张蜡宝 ,
  • 熊予莹 ,
  • 初本莉 ,
  • 余红华 ,
  • 肖 化
展开
  • (华南师范大学 物理与电信工程学院, 广州 510006)

收稿日期: 2006-11-18

  修回日期: 2007-01-12

  网络出版日期: 2007-11-20

Fabrication of Zinc Oxide Thin Films by Magnetron Sputtering Based on Opal Template and its Optical Properties

  • ZHANG La-Bao ,
  • XIONG Yu-Ying ,
  • CHU Ben-Li ,
  • YU Hong-Hua ,
  • XIAO Hua
Expand
  • (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China)

Received date: 2006-11-18

  Revised date: 2007-01-12

  Online published: 2007-11-20

摘要

采用常温射频磁控溅射方法在聚苯乙烯欧珀模板上生长氧化锌薄膜, 通过煅烧去除模板得到了类似纳米碗结构的氧化锌. 用SEM分析了模板和氧化锌的形貌. 实验结果表明: 模板为FCC结构的聚苯乙烯密堆小球, 氧化锌呈六角排列的纳米碗结构. XRD分析结果表明, 实验中制备的ZnO为沿(001)方向择优生长的六方晶型结构薄膜. 样品FTIR、UV-Vis和PL谱等的分析表明, 欧珀模板-氧化锌复合结构光致发光强度比除去模板后的氧化锌薄膜高4~5倍. 这可能是由于样品的微结构造成的, 其机理值得进一步研究.



本文引用格式

张蜡宝 , 熊予莹 , 初本莉 , 余红华 , 肖 化 . 基于欧珀模板磁控溅射生长氧化锌薄膜及其光学特性[J]. 无机材料学报, 2007 , 22(6) : 1117 -1121 . DOI: 10.3724/SP.J.1077.2007.01117

Abstract

By using polystyrene opal template as substrate, zinc oxide film samples were prepared by a magnetron sputtering process. The structure and optical properties of the fabricated samples were analyzed by FTIR, XRD, UV-VIS and PL spectra. The results of SEM analysis show that the PS template has a multi-layer structure consisting of periodically hexagonal array of polystyrene spheres in three dimensions and the zinc oxide film has a surface morphology arrayed by ZnO hollow hemispheres like nanobowls with high smooth and density. These imply that zinc oxide can be deposited on the template without destroying the structure of polystyrene opal template during sputtering process. Therefore the zinc oxide produced by magnetron sputtering duplicates the surface structure of the opal template. PL spectra show that the photoluminescence intensity of the composite of zinc oxide and opal template is 4--5 times stronger than that of the template removed zinc oxide film.

参考文献

[1] Wang Z L. J. Phys.: Condens. Matter, 2004, 16: 829--858.
[2] Wang Z L. Nanowires and Nanobelts—Materials, Properties and Devices Vol Ⅱ: Nanowires and Nanobelts of Functional Materials. Beijing: Tsinghua University Press, 2004. 3--19.
[3] Bagnall D M, Chen Y F, Zhu Z, et al. Appl. Phys. Lett., 1997, 70 (17): 2230--2232.
[4] Ryu Y R, Kim W J, White H W. J. Cryst. Growth, 2000, 219 (4): 419--422.
[5] Aoki T, Hatanaka Y, Look D C. Appl. Phys. Lett., 2000, 76 (22): 3257--3259.
[6] Huang M H, Mao S, Feick H, et al. Science, 2001, 292: 1897--1899.
[7] Vayssieres L. Adv. Mater., 2003, 15 (5): 464--466.
[8] Wu J J, Liu S C. Adv. Mater., 2002, 14 (3): 215--218.
[9] Pan Z W, Dai Z R, Wang Z L. Science, 2001, 291: 1947--1949.
[10] Park W I, Yi G C, Kim M, et al. Adv. Mater., 2002, 14 (24): 1841--1843.
[11] Kong X Y, Ding Y, Yang R, et al. Science, 2004, 303: 1348--1351.
[12] Wang X D, Graugnard E, King J S, et al. Nano Letters, 2004, 4 (11): 2223--2226.
[13] Hulteen J C, Martin C R. J. Mater. Chem., 1997, 7 (7): 1075--1087.
[14] Juare B G, Garcia P D, Golmayo D, et al. Adv. Mater., 2005, 17 (22): 2761--2764.
[15] Scharrer M, Wu X, Yamilov A, et al. Appl. Phys. Lett., 2005, 86: 1511--1513.
[16] Hu X F, Kuai S Y, Yu Y, et al. Journal of Inorganic Materials, 2005, 20 (6): 1463--1466.
[17] Zhang L B, Xiong Y Y, Weng Z M, et al. Philos. Mag. Lett., 2006, 86 (11): 707--712.
[18] Xu P, Sun Y, Shi C, et al. Sci. China Ser. A-Math., 2001, 44 (9): 1174--1181.
[19] Fang Z, Wang Y, Xu D, et al. Opt. Mater., 2004. 26 (3): 239--242.
[20] Zhang C F, Dong Z W, You G J, et al. Appl. Phys. Lett., 2005, 87: 051920-051923.
[21] Peng Y Y, Hsieh T E, Hsu C H. Nanotechnology, 2006, 17 (1): 174--180.
[22] Abrarov S M, Yuldashev S U, Kim T W, et al. Opt. Commun., 2006, 259 (1): 378--384.
文章导航

/