研究论文

Pb1-xSrxSe薄膜材料的微结构和光学特性

  • 王擎雷 ,
  • 吴惠桢 ,
  • 斯剑霄 ,
  • 徐天宁 ,
  • 夏明龙 ,
  • 谢正生 ,
  • 劳燕锋
展开
  • (1. 浙江大学 物理系, 杭州 310027; 2. 中国科学院 上海微系统与信息技术研究所信息功能材料国家重点实验室, 上海 200050)

收稿日期: 2006-11-30

  修回日期: 2007-03-15

  网络出版日期: 2007-11-20

Microstructure and Optical Properties of Pb1-xSrxSe Thin Films

  • WANG Qing-Lei ,
  • WU Hui-Zhen ,
  • SI Jian-Xiao ,
  • XU Tian-Ning ,
  • XIA Ming-Long ,
  • XIE Zheng-Sheng ,
  • LAO Yan-Feng
Expand
  • (1. Department of Physics, Zhejiang University, Hangzhou 310027, China; 2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

Received date: 2006-11-30

  Revised date: 2007-03-15

  Online published: 2007-11-20

摘要

采用分子束外延的方法在BaF2衬底(111)上制备出了高质量的Pb1-xSrxSe (0≤ x≤0.050)薄膜. X射线衍射结果表明, Pb1-xSrxSe 薄膜为立方相NaCl型晶体结构, 没有观察到SrSe相分离现象, 薄膜的取向为平行于衬底(111)晶面. 薄膜晶格常数随Sr含量的增加逐渐增大, Sr含量由Vegard公式得到. 再用理论模拟Pb1-xSrxSe 薄膜透射光谱的方法得到了相应的带隙. 最后通过介电函数模型拟合得到了PbSe和Pb1-xSrxSe 薄膜在光子能量位于基本带隙附近的折射率n和吸收系数α.

本文引用格式

王擎雷 , 吴惠桢 , 斯剑霄 , 徐天宁 , 夏明龙 , 谢正生 , 劳燕锋 . Pb1-xSrxSe薄膜材料的微结构和光学特性[J]. 无机材料学报, 2007 , 22(6) : 1108 -1112 . DOI: 10.3724/SP.J.1077.2007.01108

Abstract

High quality Pb1-xSrxSe (0≤ x≤0.050) thin films were grown on BaF2(111) substrates by using molecular beam epitaxy(MBE). Optical and structural properties of the Pb1-xSrxSe films were studied using transmission spectrum and high resolution X-ray diffraction (HRXRD). HRXRD patterns indicate that Pb1-xSrxSe films has cubic-phase structure, with no SrSe phase separation.
The films orientation is parallel to (111) surface of substrate. The lattice constants of the Pb1-xSrxSe films increase with increasing Sr content. The Sr content can be obtained by using Vegard formula. Sharp absorption edges are observed in the transmission spectrum of Pb1-xSrxSe films. The fundamental band gap of the Pb1-xSrxSe films is attained by simulation. Refractive indexes and absorption coefficients near the fundamental band-gap are obtained by simulation using dielectric function model(DFM).

参考文献

[1] Krauss T D, Wise F W,Tanner D B. Phys. Rev. Lett., 1996, 76 (8): 1376--1379.
[2] Suzuki N, Sawai K, Adachi S. J. Appl. Phys., 1995, 77 (3): 1249--1255.
[3] Schwarzl T, Hei \beta W, Springholz G. Appl. Phys. Lett., 1999, 75 (9): 1246--1248.
[4] Ma J X, Jia Y, Liang E J, et al. Acta Phys. Sin., 2003, 52 (12): 3155--3161.
[5] 孙 柏, 邹崇文, 刘忠良, 等(SUN Bai, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (4): 1005--1010.
[6] McCann P J, Kamat P, Li Y, et al. J. Appl. Phys., 2005, 97 (5): 053103,1--4.
[7] Zhao F, Wu H, Majumdar A, et al. Appl. Phys. Lett., 2003, 83 (25): 5133--5135.
[8] Felix C L, Bewley W W, Vurgaftman I, et al. Appl. Phys. Lett., 2001, 78 (24): 3770--3772.
[9] Chen J, Shen W Z. J. Appl. Phys, 2006, 99 (1): 013513,1--5.
[10] 周 玉, 武高辉. 材料分析测试技术, 第一版. 哈尔滨: 哈尔滨工业大学出版社, 2000. 26--29.
[11] Shen W Z. Proceeding of SPIE, Bellingham, WA. 2004, 5359: 40--51.
[12] Swanepoel R. J. Phys. E: Sci. Instrum., 1983, 16: 1214--1222.
[13] Teng C W, Muth J F. Appl. Phys. Lett., 2000, 76 (8): 979--981.
[14] Shen W Z, Jiang L F, Yang H F, et al. Appl. Phys. Lett., 2002, 80 (12): 2063--2065.
[15] Aspnes D E, Theeten J B, Hottier F. Phys. Rev. B, 1979, 20 (8): 003292,1--11.
[16] Forouhi A R, Bloomer I. Phys. Rev. B, 1986, 34 (10): 7018--7026.
[17] Jellison G E J r, Modine F A. Appl. Phys. Lett., 1996, 69 (3): 371--373.
[18] Adachi S. J. Appl. Phys., 1990, 68 (3): 1192--1196.
[19] Majumdar A, Xu H Z, Zhao F, et al. J. Appl. Phys., 2004, 95 (3): 939--942.
[20] Yuan S, Krenn H, Springholz G, et al. Phys. Rev. B, 1993, 47 (12): 7213--7225.
[21] Krenn H, Yuan S, Frank N, et al. Phys. Rev. B, 1998, 57 (4): 2393--2401.
文章导航

/