研究论文

光学浮区法生长YFeO3晶体

  • 申 慧 ,
  • 徐家跃 ,
  • 郁金星 ,
  • 武安华
展开
  • (1. 中国科学院 上海硅酸盐研究所, 上海 200050; 2. 中国科学院 研究生院, 北京 100049; 3. 上海交通大学 材料科学与工程学院, 上海 200030)

收稿日期: 2006-11-14

  修回日期: 2007-01-12

  网络出版日期: 2007-11-20

Floating Zone Growth of YFeO3 Single Crystals

  • SHEN Hui ,
  • XU Jia-Yue ,
  • YU Jin-Xing ,
  • WU An-Hua
Expand
  • (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; 3. School of Materials Sciences and Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

Received date: 2006-11-14

  Revised date: 2007-01-12

  Online published: 2007-11-20

摘要

采用光学浮区法生长了新型磁光晶体YFeO3, 通过工艺优化, 获得了φ(7~10)mm、长度约60mm的YFeO3晶体. XRD分析表明晶体具有正交钙钛矿结构, 晶格常数a=5.5964A, b=7.6052A, c=5.2842A. 晶体生长界面为凸界面, 生长取向接近[100]方向.晶体截面抛光后观察, 未发现肉眼可见的包裹体、晶界等缺陷.

本文引用格式

申 慧 , 徐家跃 , 郁金星 , 武安华 . 光学浮区法生长YFeO3晶体[J]. 无机材料学报, 2007 , 22(6) : 1099 -1102 . DOI: 10.3724/SP.J.1077.2007.01099

Abstract

Novel magneto-optical crystal YFeO3 (yttrium orthoferrite) was grown by the floating zone method. The growth parameters were optimized and YFeO3 single crystal up to 7--10mm in diameter and 60mm in length was obtained. XRD patterns show that it has orthorhombic perovskite structure with a=5.5964A, b=7.6052A, c=5.2842A. The solid-liquid interface is convex to the melt and the growth direction is close to [100] direction. No visible inclusions and grain boundaries are observed on the polished surface.

参考文献

[1] 刘湘林, 刘公强, 金绥更. 磁光材料和磁光器件, 第一版. 北京: 北京科学技术出版社, 1990. 30--32.
[2] 张溪文, 梁 军, 张守业(ZHANG Xi-Wen, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (4): 731--736.
[3] Didosyan Y S, Hauser H, Nicolics J, et al. J. Appl. Phys., 2000, 87 (9): 7079--7081.
[4] Didosyan Y S, Hauser H, Fiala W, et al. J. Appl. Phys., 2002, 91 (10): 7000--7002.
[5] Didosyan Y S, Hauser H. IEEE Trans. Instru. Meas., 2000, 49 (1): 14--18.
[6] Van Hook H J. J. Am. Ceram. Soc., 1962, 45: 162--165.
[7] Quon H H, Potvin A J. J. Crystal Growth, 1971, 10: 124--126.
[8] Wanklyn Barbara M. J. Crystal Growth, 1969, 5: 323--328.
[9] Kolb E D, Wood D L, Laudise R A. J. Appl. Phys., 1968, 39 (2): 1362--1364.
[10] Higuchi S, Yasunori F, Shunji T, et al. Jpn. J. Appl. Phys., 1999, 38: 4122--4126.
[11] Kitamura K, Kimura S. J. Crystal Growth, 1980, 48: 469--472.
文章导航

/