采用乙二胺四乙酸(EDTA)-硝酸盐、溶胶-凝胶低温自蔓延燃烧法合成了Sm0.15Gd0.05Ce0.O1.9 (SGDC)纳米粉体, 研究了以不同分散方式和分散时间制备的SGDC在各种烧结温度下的致密化行为. 为更好地考察团聚对SGDC致密化的影响, 本实验引入团聚体系数(Coagulation factor)来具体表征和量化纳米SGDC的团聚程度. 结果表明: 团聚在烧结过程中, 严重阻碍和抑制了SGDC的致密化; 在同一烧结温度下, 团聚体系数较低的固溶体具有更高的烧结致密度. 通过高剪切乳化分散后, SGDC的团聚体系数为1.04时, 烧结致密化温度可降低至1300℃. 这个温度比以前文献中所报道的1400~1600℃的烧结温度要低得多. 通过对团聚的控制, 显著改善了SGDC电解质的烧结性能.
By synthesizing reactive powders via a self-sustaining combustion synthesis, the EDTA-nitrate process, Sm0.15Gd0.05Ce0.8O1.9 was prepared. The resultant powders were dispersed with the terpineol as the dispersant by different methods such as ball milling and high-shear dispersing. Coagulation factor (CF) was adopted to denote the agglomeration degree of nano-scale SGDC in this work. The effect of agglomeration on the densification behaviors at different sintering temperatures was investigated. The studies indicate that agglomeration retards densification in the stage of sintering. The powders with better dispersion exhibit a higher sintered density at the same temperature. After effective dispersion measures taken, SGDC can fully densified at the sintering temperature of 1300℃. The densification temperature is significantly lower than those reported previously.
[1] 李松丽, 王绍荣, 聂怀文, 等(LI Song-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (5): 1121--1126.
[2] 杨乃涛, 孟秀霞, 谭小耀, 等(YANG Nai-Tao, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 409--414.
[3] Nguyen Q. Solid State Ionics, 2004, 174: 271--277.
[4] Tietz F, Buchkremer H.-P, Stover D, et al. Solid State Ionics, 2002, 152: 373--381.
[5] Ji-Guang Li, Takayasu Ikegami, Toshiyuki Mori, et al. Acta Materialia, 2004, 52: 2221--2228.
[6] Alexander Alexandrovich Gromov, Ulrich Forter-Barth, Ulrich Teipel, et al. Powder Technology, 2006, 164: 111--115.
[7] Van herle, Horita T, Kawada T, et al. Solid State Ionics, 1996, 86: 1255--1258.
[8] Xia C, Liu M, et al. Solid State Ionics, 2002, 152-153: 423--430.
[9] Reiss I, Brounshitein D, Tannhauser D S, et al. J. Am. Ceram. Soc., 2001, 64: 479--486.
[10] Huang K, Feng M, Goodenough J B, et al. J. Am. Ceram. Soc., 1998, 81 (2): 357--362.
[11] Yamashita K, Ramanujachary K V, Hreenblattm, et al. Solid State Ionics, 1995, 181 (2): 53--60.
[12] Mather G C, Figueiredo F M, Jurado J R, et al. Solid State Ionics, 2003, 162: 115--120.
[13] Ringuede A, Labrincha J A, Frade J R. Solid State Ionics, 2001, 141-142: 549--557.
[14] Ruiz F, Perez-Robles, Gonzalez J, et al. Material letters, 2000, 42: 25--32.