研究论文

无水溶胶-凝胶法制备LiFePO4/C电极材料及其结构和电化学性能

  • 樊军良 ,
  • 潘洪革 ,
  • 高明霞 ,
  • 林燕 ,
  • 刘继强
展开
  • 浙江大学 材料科学与工程学系, 杭州 310027

收稿日期: 2006-11-26

  修回日期: 2007-01-09

  网络出版日期: 2007-11-20

Synthesis and Performance of LiFePO4/C Prepared with Nonaqueous Sol-Gel Method

  • FAN Jun-Liang ,
  • PAN Hong-Ge ,
  • GAO Ming-Xia ,
  • LIN Yan ,
  • LIU Ji-Qiang
Expand
  • Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2006-11-26

  Revised date: 2007-01-09

  Online published: 2007-11-20

摘要

以乙二醇为溶剂, 采用溶胶-凝胶法合成了LiFePO4/C. 采用X射线衍射、扫描电镜、透射电镜和电化学阻抗谱等分析测试方法, 研究了600~750℃范围内合成的LiFePO4/C的微观结构特征、在不同放电倍率下的循环稳定性和放电容量等电化学性能. 研究结果表明, 合成温度对LiFePO4的结晶状况及LiFePO4/C电极的电化学性能有着显著的影响. 700℃烧结的产物结晶完整, 颗粒细小(~150nm) 均匀, 电化学性能有了显著的提高, 0.5C的放电容量达到150mAh/g, 1C的放电容量仍有141mAh/g, 经200个循环, 放电容量基本保持不变.

本文引用格式

樊军良 , 潘洪革 , 高明霞 , 林燕 , 刘继强 . 无水溶胶-凝胶法制备LiFePO4/C电极材料及其结构和电化学性能[J]. 无机材料学报, 2007 , 22(6) : 1032 -1036 . DOI: 10.3724/SP.J.1077.2007.01032

Abstract

LiFePO4/C was synthesized by a sol-gel method using glycol as solvent. X-ray diffraction and scanning electron microscope were used for the phase identification and the structural observation of the synthesized LiFePO4 products. The electrochemical properties including the cycle stability, the discharge capacity under different discharge rates of LiFePO4 synthesized at 600--750℃ were investigated by means of electrochemical impedance spectroscope and other methods. The results show that the crystallization and electrochemical performance of LiFePO4/C are affected remarkably by the sintering temperature. LiFePO4/C sintered at 700℃ is well crystallized and has an even distribution of gain with size of around 150nm, exhibiting excellent electrochemical properties. Its discharge capacity reaches 150mAh/g at 0.5C and the discharge capacity still reaches 141mAh/g at 1C. The discharge capacity of the LiFePO4/C is almost reserved after 200 cycles.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Journal of Electrochemical Society, 1997, 144: 1188. [2] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Journal of Electrochemical Society, 1997, 144: 1609. [3] Padhi A K, Manivannan V, Goodenough J B. Journal of Electrochemical Society, 1998, 145: 1518. [4] Yamada A, Chung S C. Journal of Electrochemical Society, 2001, 148: A224--A229.
[5] Shiraishi Keisuke, Dokko Kaoru, Kanmura Kiyoshi, et al. Journal of Power Source, 2005, 146: 555--558.
[6] Dominko R, Goupil J M, Bele M, et al. Journal of Electrochemical Society, 2005, 152 (5): A858--A863.
[7] Hui X, Zhen T Z. Electrochimica Acta, 2006, 51: 2063--2067.
[8] 文衍宣, 郑绵平, 童张法, 等(WEN Yan-Xuan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 115--120.
[9] 杨书廷, 李廷举(YANG Shu-Ting, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (4): 880--884.
[10] Herle P S, Ellis B, Coombs N, et al. Nature Materials, 2004, 3: 147--152.
[11] Goupil J M, Bele M. Journal of Electrochemical Society, 2005, 152 (5): A858--A863.
[12] Dominko R, Bele M, Gaberscek M, et al. Journal of Electrochemical Society, 2005, 152 (3): A607--A610.
[13] Liao X Z, Ma Z F, He Y S, et al. Journal of Electrochemical Society, 2005, 152 (10): A1969--A1973.
[14] Wu M S, Chiang P J, Lin J C. Journal of Electrochemical Society, 2005, 152 (1): A47--A52.
[15] Li X L, Kang F Y, Shen W C. Carbon, 2006, 44: 1298--1352.
[16] Hong J, Wang C S, Kasavajjula U. Journal of Power Sources, 2006, doi:10.1016/j.jpowsour.2006.08.004.

[17] 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池-应用与实践, 第1版. 北京:化学工业出版社, 2004. 14--17.

文章导航

/