采用水热法制备了均匀分散、具有花球形貌的YBO3∶Eu3+. 利用X射线衍射仪、X射线能量仪、高分辨透射电镜、扫描电镜等手段对其结构、形貌进行了研究, 发现其为六方球霰石晶相, 仅含有Y、O、B、Eu元素, 微球直径约1~2μm, 组装成花球的薄片厚度约100nm. 提出了其形成机理:在水热过程中生成的YBO3晶核在六亚甲基四胺(HMT)的调节下各向异性生长为二维薄片, 并最终组装成为花球状结构. 研究发现得到的YBO3∶Eu3+在612nm表现出显著的红光发射, 并且由于Eu3+附近晶体场对称性降低, 样品表现出较高的红光/橙光(R/O)比率.
YBO3∶Eu3+ microspheres with flower-like structures were fabricated by a facile hydrothermal method. The composition, structure and morphology of obtained YBO3∶Eu3+ were studied by means of XRD、EDX, HRTEM and SEM. The as-prepared YBO3∶Eu3+ microspheres show hexagonal vaterite phase with the elements of Y, O, B, Eu to be found. The YBO3 microspheres, with an average diameter of 1-2μm, are composed of nanosheets with thickness of 100nm. The formation mechanism of the flower-like structures is also proposed. The YBO3∶Eu3+ samples have a strong red emission at 612nm and a high R/O ratio under ultraviolet excitation, which indicate lower symmetry of crystal field around Eu3+ in such flower-like structures.
[1]Xia Y N, Yang P D, Sun Y G, et al. Adv. Mater., 2003, 15(5): 353-389.
[2]Sun Y G, Xia Y N. Science, 2002, 298(5601): 2176-2179.
[3]Gou L F, Murphy C J. Nano Lett., 2003, 3(2): 231-234.
[4]Xu R, Zeng H C. J. Phys. Chem. B, 2003, 107(4): 926-930.
[5]Sun X M, Li Y D. Chem. Commun., 2003, 14: 1768-1769.
[6]Yin Y D, Lu Y, Sun Y G, et al. Nano Lett., 2002, 2(4): 427-430.
[7]Sun Y G, Xia Y N. Adv. Mater., 2002, 14(11): 833-837.
[8]Sun Y G, Yin Y D, Mayers B T, et al. Chem. Mater., 2002, 14(11): 4736-4745.
[9]Kim K N, Jung H K, Park H D. J. Mater. Res., 2002, 17(4): 907-910.
[10]Moine B, Mugnier J, Boyer D, et al. J. Alloy. Compd., 2001, 23(816): 323-324.
[11]Bertrand-Chadeyron G, El-Ghozzi M, Boyer D, et al. J. Alloy. Compd., 2001, 317-318: 183-185.
[12]Bertrand-Chadeyron G, El-Ghozzi M, Mahiou R, et al. J. Solid State Chem., 1997, 148(2): 229-235.
[13]Boyer D, Bertrand-Chadeyron G, Mahiou R, et al. J. Mater. Chem., 1999, 9(1): 211-214.
[14]Ren M, Lin J H, Dong Y, et al. Chem. Mater., 1999, 11(6): 1576-1580.
[15]吴雪艳, 洪广言,曾小青,等. 高等学校化学学报, 2000, 21(11): 1658-1660.
[16]Li Y Y, Peng M L, Feng S H. Chin. Chem. Lett., 1996, 7(4): 387-388.
[17]Kim D S, Lee R Y. J. Mater. Sci., 2000, 35(19): 4777-4782.
[18]Jiang X C, Yan C H, Sun L D, et al. J. Solid State Chem., 2003, 175(2): 245-251.
[19]Jiang X C, Sun L D, Feng W, et al. Cryst. Growth Des., 2004, 4(3): 517-520.
[20]Jiang X C, Sun L D, Yan C H. J. Phys. Chem. B, 2004, 108(11): 3387-3390.
[21]Li Z H, Zeng J H, Li Y D. Small, 2007, 3(3): 438-443.
[22]Mullin J W. Crystallization, 3rd ed. Oxford: Butterworth-Heinemaan, 1997.
[23]Zhang J, Lin J. J. Cryst. Growth, 2004, 271(1-5): 207-215.
[24]Feldmann C, Justel T, Ronda C R, et al. J. Lumin., 2001, 92(3): 245-254.
[25]Wei Z G, Sun L D, Liao C S, et al. Appl. Phys. Lett., 2002, 80(8): 1447-1449.