研究论文

葡萄糖基碳包覆ZnFeO的合成及其红外发射率研究

  • 周建华 ,
  • 王 涛 ,
  • 王道军 ,
  • 何建平
展开
  • (南京航空航天大学 材料科学与技术学院, 南京 210016)

收稿日期: 2008-12-23

  修回日期: 2009-02-18

  网络出版日期: 2009-09-20

Preparation and Infrared Emissivity of Glucose-based Carbon Coated ZnFeO

  • ZHOU Jian-Hua ,
  • WANG Tao ,
  • WANG Dao-Jun ,
  • HE Jian-Ping
Expand
  • (College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Received date: 2008-12-23

  Revised date: 2009-02-18

  Online published: 2009-09-20

摘要

为抑制锌铁氧体在8~14μm频段的红外发射, 以水热合成的ZnFeO粒子为种子, 进一步在葡萄糖溶液中水热合成了高分散性的碳包覆ZnFeO复合材料. 借助于TEM、红外和紫外光谱技术, 证实形成了葡萄糖基碳包覆ZnFeO的核壳结构. 500℃热处理后包覆层碳化程度提高, 但内核仍为氧化物. 而1000℃时内核发生碳热还原反应, 形成了石墨层包覆Fe纳米晶的结构. 8~14μm频段的发射率测试结果表明:葡萄糖基碳包覆样品在未经热处理时平均红外发射率降低至0.5以下, 500℃热处理后平均红外发射率最低可至0.353, 拓宽了锌铁氧体的隐身频段.

本文引用格式

周建华 , 王 涛 , 王道军 , 何建平 . 葡萄糖基碳包覆ZnFeO的合成及其红外发射率研究[J]. 无机材料学报, 2009 , 24(5) : 1045 -1048 . DOI: 10.3724/SP.J.1077.2009.01045

Abstract

To restrain the infrared emission of zinc ferrite in 8-14μm wave band, highly dispersed carbon coated ZnFeO nanocomposites were obtained from glucose solution under hydrothermal conditions, where ZnFeO particles prepared firstly in a simple hydrothermal route was used as the seeds. It was proved to be a core-shell structure of glucose-based carbon coated ZnFeO particles by transmission electron microscope (TEM), fourier transform infrared (FT-IR), and UV-Vis technologies. After heat-treated at 500℃, the carbonization degree of the coating is improved, but the core is still oxide. Whereas the core takes place a carbothermal reduction at 1000℃, it finally yields a structure with a graphite layer coated Fe nanocrystals. The infrared emissivity tests in 8-14μm waveband show that it can be lowered to 0.5 by the glucose-based carbon coating without the heat treatment. After heat-treated at 500℃, it lowers the average infrared emissivity further to 0.353, which will expand the stealth band of zinc ferrite.

参考文献

[1]Peng C H, Hwang C C, Wan J, et al. Mater. Sci. Eng. B, 2005, 117(1): 27-36.
[2]Yusoff A N, Abdullah M H. J. Magn. Magn. Mater., 2004, 269(2): 271-280.
[3]Chen N, Mu G H, Pan X F, et al. Mater. Sci. Eng. B, 2007, 139(2/3): 256-260.
[4]Tang X, Hu K. Mater. Sci. Eng. B, 2007, 139(2/3): 119-123.
[5]Wang G Q, Chen X D, Duan Y P, et al. J. Alloys Compd., 2008, 454(1/2): 340-346.
[6]谢 炜, 程海峰, 楚增勇, 等 (XIE Wei, et al). 无机材料学报 (Journal of Inorganic Materials), 2008, 23(3): 481-485.
[7]Shen G Z, Xu M, Xu Z. Mater. Chem. Phys., 2007, 105(2/3): 268-272.
[8]Deng H, Li X L, Peng Q, et al. Angew. Chem. Int. Ed., 2005, 44(18): 2782-2785.
[9]张春雷, 李 爽, 彭艳兵, 等. 高等学校化学学报, 1998, 19(10): 1537-1541.
[10]Yu T, Deng Y H, Wang L, et al. Adv. Mater., 2007, 19(17): 2301-2306.
[11]Shan Y, Zhou Y M, Cao Y, et al. Mater. Lett., 2004, 58(10): 1655-1660.
[12]He N Y, Guo Y F, Deng Y, et al. Chinese Chem. Lett., 2007, 18(4): 487-490.
[13]Wang Z F, Xiao P F, He N Y. Carbon, 2006, 44(15): 3277-3284.
[14]Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004, 43(5): 597-601.
[15]Liu Q L, Zhang D, Fan T X, et al. Carbon, 2008, 46(3): 461-465.
[16]赵 木, 宋怀河, 连文涛, 等 (ZHAO Mu, et al). 无机材料学报 (Journal of Inorganic Materials), 2007, 22(4): 599-603.
[17]孙艳青, 周钰明 (SUN Yan-Qing, et al). 无机材料学报 (Journal of Inorganic Materials), 2007, 22(2): 227-231.
[18]吕瑞涛, 康飞宇, 韦进全, 等 (LV Rui-Tao, et al). 无机材料学报 (Journal of Inorganic Materials), 2008, 23(1): 23-28.
文章导航

/