以PEG(Mn=20000)为模板导向剂, 尿素为沉淀剂, 采用水热热分解法制备了纳米介孔结构的氧化铝纤维, 并对其吸附性能进行了研究. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、热释重仪(TGA)和N2等温脱附-吸附分析, 考察了介孔氧化铝纤维的相态、结构、形貌、比表面积和介孔特征. 采用选择性催化还原(SCR)烟气脱硝装置对其吸附性能进行了研究. 结果表明:以PEG为模板, 采用简单的水热法就可得到直径(200~300)nm×(8~10)μm的碳酸铝铵纤维; 经900℃煅烧2h得到比表面积为316m2/g、平均孔径为2.5nm的η-Al2O3介孔纤维, 形貌基本不发生变化; SCR烟气脱硝测试显示, 相比商品氧化铝粉末, 合成的氧化铝介孔纤维有着更强的吸附性能, 它的脱硝效率较之商品氧化铝粉末约提高了15%.
Using template PEG as structure directing agent and urea as the precipitant, alumina microfibers with mesoporous structures were successfully synthesized from a hydrothermal preparation and thermal-decomposition of precursor of ammonium aluminum carbonate hydroxide (denoted as AACH), and its adsorbability was also investigated. The phase state, chemical structure, surface morphology, special surface areas and mesoporous structure of the synthesized alumina microfibers were characterized systemically by means of XRD, SEM, TEM, TG/DTA, and N2 adsoption-desoption techniques, respectively. The adsorptive property of the obtained mesoporous alumina fibers was examined by using a typical SCR(Selective Catalytic Reduction) denitrification facility. The results show that the AACH microfibers with diameter of about 200-300nm and length up to 8μm or 10μm are prepared by using PEG as template. The mesoporous η-Alumina microfibers with specific surface area 316m2/g and average pore diameter 2.5nm are obtained after calcined at 900℃ for 2h, and the morphology is retained in the calcination process. SCR denitrification tests show that the as-prepared mesoporous alumina microfibers exhibit more favorable adsorptive property and its efficiency of denitrification increases approximately 15% compared with commercial γ-Al2O3 powder.
[1]王连洲, 施剑林, 禹 剑, 等(WANG Lian-Zhou, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14(3): 333-342.
[2]闫继娜, 施剑林, 陈航榕, 等(YAN Ji-Na, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18(4): 725-730.
[3]Liu Qian, Wang Aiqin, Wang Xiaodong, et al. Microporous and Mesoporous Materials, 2007, 100(1/2/3): 35-44.
[4]Lee Hyun Chul, Kim Hae Jin, Rhee Chang Houn, et al. Microporous and Mesoporous Materials, 2005, 79(1/2/3): 61-68.
[5]Li Yuanyuan, Liu Jinping, Jia Zhijie. Materials Letters, 2006, 60(29/30): 3586-3590.
[6]Qu Lihong, He Changqing, Yang Yue, et al. Materials Letters, 2005, 59(29/30): 4034-4037.
[7]Jagadish C Ray, You Kwang-Seok, Ahn Ji-Whan, et al. Microporous and Mesoporous Materials, 2007, 100(1/2/3): 183-190.
[8]陶新永, 张孝彬, 孔凡志, 等. 化学学报, 2004, 62(17): 1658-1662.
[9]Zhang Lingxia,Yu Chichao, Gao Jianhua, et al. Journal of Materials Science, 2008, 43(22): 7184-7191.
[10]Bai Peng, Su Fabing, Wu Pingping, et al.Langmuir, 2007, 23(8): 4599-4605.
[11]马 珑, 沈利亚, 李建功. 兰州大学学报, 2004, 40(1): 26-29.
[12]李晓生, 刘昌胜, 袁 媛, 等(Li Xiao-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 327-331.
[13]Yu Chichao, Zhang Lingxia, Shi Jianlin,et al. Advanced Functional Materials, 2008,18(10): 1544-1554.
[14]Yu Chichao, Dong Xiaoping, Guo Limin, et al. Journal of Physical Chemistry C, 2008, 112(35): 13378-13382.