采用等离子喷涂铈酸镧(La2Ce2O7, LC)粉末制备了铈酸镧热障涂层(TBCs).由于等离子喷涂过程中CeO2的挥发量较多,造成涂层的实际成分为La2Ce1.66O4.32,与原始粉末成分相比有所偏离.在1400℃下经240h热处理后LC涂层发生轻微的分解.在1000℃下LC块材的热导率约为0.51W/(m·K),比传统的氧化钇部分稳定的氧化锆(YSZ)块材的热导率降低了约75%.LC涂层的热膨胀系数(CTE)在450~1100℃范围内介于10×10-6~13×10-6K-1,与相应温度范围内的YSZ相比较高.热膨胀性能测量表明,LC涂层从室温升到1250℃时发生轻微的烧结,在1250℃保温过程发生明显的烧结现象.LC热障涂层在1100℃条件下经60次热循环后从陶瓷层内部发生剥落.
Lanthanum-cerium oxide (La2Ce2O7, LC) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying (APS). The actual composition of the as-sprayed coating is La2Ce1.66O4.32, due to the volatilization of CeO2 phase during the spray process. A little decomposition of the LC coating takes place after annealing at 1400℃ for 240h. The thermal conductivity of bulk LC material is about 0.51W/(m·K) at 1000℃, which is one fourth of that of typical bulk YSZ. The coefficient of thermal expansion (CTE) of the LC coating ranges from 10×10-6K-1 to 13×10-6K-1 at the temperature from 450℃ to 1100℃, which is relatively higher than that of the YSZ coating. Dilatometric measurements show that there is slight shrinkage in the coating till 1250℃, however, a remarkable sintering process happens cluring holding period at 1250℃. A spallation of the LC TBC occurs after 60 cycles at 1100℃ by typical delaminating cracking within the LC topcoat.
[1]Milller R. J. Therm. Spray Technol., 1997, 6(1): 35-42.
[2]Padture N P, Gell M, Jordan E H. Sci., 2002, 296(5566): 280-284.
[3]Vassen R, Cao X, Tietz F, et al. J. Am. Ceram. Soc., 2000, 83(8): 2023-2028.
[4]Stoever D, Pracht G, Lehmann H, et al. J. Therm.Spray Technol., 2004, 13(1): 76-83.
[5]Dietrich M, Verlotski V, Vassen R, et al. Mater. Sci. Eng. Technol., 2001, 32(8): 669-672.
[6]Mack D, Gross S, Vassen R, et al. J. Therm. Spray Technol., 2006, 15(4): 652-656.
[7]Friedrich C, Gadow R, Schirmer T. J. Therm. Spray Technol., 2001, 10(4): 592-598.
[8]Gadow R, Lischka M. Surf. Coat. Technol., 2002, 151-152: 392-399.
[9]Matsumoto K, Itoh Y, Kameda T. Sci. Technol. Adv. Mater., 2003, 4(2): 153-158.
[10]Singh J, Wolfe D, Miller R, et al.J. Mater. Sci., 2004, 39(6): 1975-1985.
[11]Hirschfeld D, Liu D, Brown J. In the 4th International Symposium-On Ceramic Materials and Components for Engines, London: Elsevier Applied Science, 1992: 372-380.
[12]Vassen R, Traeger F, Stoever D. Int. J. Appl. Ceram. Technol., 2004, 1(4): 351-361.
[13]Cao X, Meng J. Rare Metals, 2002, 21(Suppl.): 110-113.
[14]Cao X, Vassen R, Fischer W, et al. Adv. Mater., 2003, 15(17): 1438-1442.
[15]Brisse F, Knop O. Can. J. Chem., 1967, 45(6): 609-615.
[16]Schulz U, Saruhan Bilge, Fritscher Klaus, et al. Int. J. Appl. Ceram. Technol., 2004, 1(4): 302-315.
[17]Ma W, Ma Y, Gong S, et al. Key Eng. Mater., 2007, 336-338: 1759-1761.
[18]Sodeoka S, Suzuki M, Inoue T, et al. In Thermal spray: Practical Solutions for Engineering Problems, proceedings of the 9th National Thermal Spray Conference, Cincinnati: ASM Internatinal, 1996: 295-301.