在空气中(无磁场)和1.3T外磁场下, 采用Fe、Fe2O3、ZnO、NaClO4分别与Ni粉、NiO和NiCO3进行了自蔓延高温合成Ni0.35Zn0.65Fe2O4的实验研究, 用红外测温仪测试坯料的燃烧温度, 应用XRD、SEM和VSM分别观察镍源变化对燃烧产物和烧结后样品性能的影响. 结果表明:采用氧化亚镍和镍粉得到的镍锌铁氧体样品无杂相存在, 磁性能较好, 有较低的矫顽力和较大的比饱和磁化强度; 采用碳酸镍自蔓延高温合成的镍锌铁氧体含有杂相, 磁性能也相应较差. 在外磁场下自蔓延高温合成镍锌铁氧体的比饱和磁化强度得到了一定的提高. 镍粉可以取代氧化亚镍作为自蔓延高温合成镍锌铁氧体的镍源.
Ni0.35Zn0.65Fe2O4 were respectively prepared by self-propagating hightemperature synthesis (SHS) method in two different conditions. The reactions of Fe, Fe2O3, ZnO, NaClO4 and various Ni-containing species (Ni, NiO, NiCO3) were carried out in air and in the presence of an external magnetic field of 1.3T. The combustion temperature was measured by infrared thermo detector. SHS products and sintered end-products were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometry (VSM). The results show that Ni0.35Zn0.65Fe2O4 synthesized using Ni and NiO as nickel sources have better magnetic properties with no miscellaneous phase, lower coercivity and the larger specific saturation magnetization, than the products synthesized using NiCO3 as nickel sources which contain impurity phase and have bad magnetic properties. The specific saturation magnetization of Ni0.35Zn0.65Fe2O4 in 1.3T magnetic field is improved. Nickel powder can replace nickel protoxide as nickel source to synthesize nickel zinc ferrite by SHS.
[1]Gama L, Diniz A P, Costa A C F M, et al. Physica B, 2006, 384(1):97-99.
[2]Li B Y, Mukasyan A, Varma A. Mat. Res. Innovat., 2003, 7(4): 245-252.
[3]Choi Y, Shim H S, Lee J S. Journal of Alloys and Compounds, 2001, 326(1): 56-60.
[4]Li Y, Zhao J P, Han J C. Materials Research Bulletin, 2002, 37(8): 583-592.
[5]Peng Cheng-Hsiuing, Hwang Chyi-Ching, Hong Ching-Kai, et al. Materials Science and Engineering B, 2004, 107(3): 295-300.
[6]Ohtsuka H. Materials Science and Engineering A, 2006, 438-440: 136-139.
[7]Cross W B, Affleck L, Kuznetsov M V, et al. J. Mater. Chem., 1999, 9(10): 2545-2552.
[8]Aguas M D, Affleck L, Parkin I P, et al. J.Mater. Chem., 2000, 10(2): 235-237.
[9]Luis F B, Kuznetsova M V, Morozov Y G, et al. International Journal of Inorganic Materials, 1999, 1(5): 311-316.