研究论文

Ni-TiO2介孔材料的低热固相合成及其光降解甲基橙的动力学

  • 刘少友 ,
  • 吴林冬 ,
  • 赵钟兴 ,
  • 冯庆革 ,
  • 王 翔 ,
  • 杨朝德
展开
  • (1. 广西大学 环境学院, 南宁 530004; 2. 广西大学 化学化工学院, 南宁 530004; 3. 凯里学院 应用化学研究所, 凯里 556000)

收稿日期: 2008-12-29

  修回日期: 2009-02-19

  网络出版日期: 2009-09-20

Synthesis of Ni-doped TiO2 Mesoporous Material via Solid-state Reaction at Low Temperature and its Kinetics of Methyl Orange Photodegradation

  • LIU Shao-You ,
  • WU Lin-Dong ,
  • ZHAO Zhong-Xing ,
  • FENG Qing-Ge ,
  • WANG Xiang ,
  • YANG Chao-De
Expand
  • (1. School of Environment, Guangxi University, Nanning 530004, China; 2. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; 3. Institute of Applied Chemistry, Kaili College, Kaili 556000, China)

Received date: 2008-12-29

  Revised date: 2009-02-19

  Online published: 2009-09-20

摘要

以十六烷基三甲基溴化铵为模板, 通过钛酸丁酯与六水氯化镍的固相反应直接合成了镍掺杂的二氧化钛(Ni-TiO2)介孔材料. 用X射线衍射、高分辨透射电镜、N2脱附-吸附、红外、紫外以及拉曼光谱仪等分析技术对材料进行了物相与表面织构表征; 通过电感耦合等离子发射光谱仪对材料的元素组成进行分析; 同时研究了材料对甲基橙的光降解性能. 结果表明, 所得的介孔材料是锐钛矿型, 金属镍已进入了二氧化钛骨架, 镍的含量为3.62wt%; 孔壁是由无定形的晶界与微晶组成, 并伴有结构缺陷和痕量的金属镍氧化物; 其BET比表面积为102.4m2/g, 孔半径分布中心为2.4nm. 在298K下, Ni-TiO2介孔材料对甲基橙溶液的紫外光降解行为遵循准一级动力学反应规律,其反应速率常数比纯TiO2粉体大二倍, 且存在明显的浓度效应.

本文引用格式

刘少友 , 吴林冬 , 赵钟兴 , 冯庆革 , 王 翔 , 杨朝德 . Ni-TiO2介孔材料的低热固相合成及其光降解甲基橙的动力学[J]. 无机材料学报, 2009 , 24(5) : 902 -908 . DOI: 10.3724/SP.J.1077.2009.00902

Abstract

With tetrabutyl orthotitanate and nickel(Ⅱ) chloride hexahydrate as original materials and cetyltrimethylammonium bromide as a template agent, Ni-doped TiO2 mesoporous material was successfully prepared by solid-state reaction. The textural properties of the materials were characterized by the X-ray diffraction, high resolution transmission electron microscope (HRTEM), N2-physisorption at 77K, fourier transform infrared spectroscope (FTIR), Raman spectroscope and ultraviolet visible light spectroscope. The components of Ni-TiO2 were determined by inductively couple plasma atomic emission spectrometry. The photodegradation properties of this material for methyl orange were detailedly investigated. The results show that nickel is incorporated into the framework of TiO2 with content of 3.62wt%. Furthermore, Ni-doped TiO2 with anatase phase is laced the wall with the amorphous grain boundary and crystallite with some defect structures and nickel oxides. For Ni-doped TiO2 mesoporous material, the specific surface area of 102.4m2/g and the pore radii distribution centre of 2.4nm are obtained. At 298K, the rule of pseudo-first-order reaction and the concentration effect are found in the photodegradation process of methyl orange on the Ni-doped TiO2 mesoporous material surface, where the reaction rate constant is two times higher than that on pure TiO2.

参考文献

[1]孙奉玉, 吴 鸣, 李文钊. 催化学报, 1998, 19(3): 229-233.
[2]Kim D H, Choi D K, Kim S J, et al. Catal. Commun., 2008, 9(5): 654-657.
[3]Mills A, Hunte S L. J. Photochem. Photobiol., A: Chem., 1997, 108(1): 1-35.
[4]甘 露, 郭秀生, 周 林. 工业催化, 2005, 13(12): 58-61.
[5]Ghorai T K, Dhak D, Biswas S K, et al. J. Mol. Catal. A: Chem., 2007, 273(1/2): 224-229.
[6]徐会颖, 周国伟, 魏英勤. 中国造纸, 2008, 27(3): 28-31.
[7]颜晓莉, 史惠祥, 雷乐成. 化工学报, 2004, 55(3): 426-433.
[8]Jiang H, Gao L. Mater.Chem.Phys., 2002,77(3): 878-881.
[9]Woo S H, Kim W W, Kim S J, et al. Mater. Sci. Eng. A, 2007, 449-451:1151-1154.
[10]Khan R, Kim T J. J. Hazard. Mater., 2009, 163(2/3): 1179-1184.
[11]Wu Y C, Wu X, Zhang L D. China Particuology, 2003, 1(6): 262-265.
[12]尤先锋, 陈 锋, 张金龙. 催化学报, 2006, 27(3): 270-274.
[13]吴子豹, 黄妙良, 杨媛媛. 精细化工, 2007, 24(1): 21-26.
[14]邓 沁, 肖新颜, 廖东亮. 精细化工, 2003, 20(12):721-723.
[15]Antonelli D M, Ying Y J. Angew. Chem., Int. Ed. Engl., 1995, 34(18): 2014-2017.
[16]Peng T Y, Zhao D, Dai K, et al. J. Phys.Chem. B, 2005, 109(11): 4947-4952.
[17]Toda F. Acc. Chem. Res., 1995, 12(12): 480-486.
[18]杨天明, 刘 刚. 药学学报, 2006, 41(8): 694-701.
[19]宋旭春, 郑遗凡, 林 深.物理化学学报, 2007, 23(2): 258-261.
[20]刘少友, 晁自胜. 中国专利: CN101049572A. 2007.10.10.
[21]Xu J X, Li L P, Yan Y J, et al. J. Colloid. Interf. Sci., 2008, 318(1):29-34.
[22]戴亚堂, 潘宝风, 涂铭旌. 武汉理工大学学报, 2006, 28(4): 1-4.
[23]Tayade R J, Kulkarni R G, Jasra R V. Ind. Eng. Chem. Res., 2006, 45(15): 5231-5238.
[24]Li H X, Li J X, Huo Y N. J. Phys. Chem. B, 2006, 110(4): 1559-1565.
[25]Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98(51): 13669-13679.
[26]Joe I H, Vasudevan A K, Aruldhas G, et al. J. Solid State Chem., 1997, 131(1): 181-184.
[27]Bellotto M, Rebours B, Clause O. J. Phys. Chem., 1996, 100(20): 8535-8542.
[28]Chen X B, Mao S S. Chem. Rev., 2007, 107(7): 2891-2959.
[29]Wang Y, Jiang Z H, Yang F J. Mater. Sci. Eng. B, 2006, 134(1): 76-79.
[30]Zhang Y H, Reller A. J. Mater. Chem., 2001, 11: 2537-2541.
[31]Wang C, Li Q, Wang R D. J. Mater. Sci., 2004, 39(5): 1899-1901.
[32]Duprey E, Beaunier P, SpringuelHuet M A, et al. J. Catal., 1997, 165(1): 22-32.
[33]徐枝新, 王明华, 江晓清.浙江科技学院学报, 2004, 16(4): 232-235.
[34]肖万能, 赵 霁, 王维江. 物理学报, 2003, 52(9): 2293-2297.
[35]于 华, 李新军, 郑少健. 无机化学学报, 2006, 22(6): 978-982.
[36]范山湖, 孙振范, 邬泉周. 物理化学学报, 2003,19(1):25-29.
[37]唐玉朝, 胡 春, 王怡中. 化学进展, 2002, 14(3): 192-199.
文章导航

/