研究论文

阴极共电沉积法制备 Fe 3+掺杂 TiO 2纳米薄膜及其可见光活性

  • 曹江林 ,
  • 吴祖成 ,
  • 曹发和 ,
  • 张鉴清
展开
  • 1. 浙江大学环境工程系, 杭州 310027; 2. 浙江大学化学系, 杭州 310027; 3. 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016

收稿日期: 2006-06-08

  修回日期: 2006-09-04

  网络出版日期: 2007-05-20

Cathodic Co-electrodeposition of Fe3+-doped TiO2 Thin Films
and Their Photocatalytic Activity under Visible Light

  • CAO Jiang-Lin ,
  • WU Zu-Cheng ,
  • CAO Fa-He ,
  • ZHANG Jian-Qing
Expand
  • 1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310027, China; 2. Department of Chemistry, Zhejiang University, Hangzhou 310027, China; 3. State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2006-06-08

  Revised date: 2006-09-04

  Online published: 2007-05-20

摘要

研究了阴极共电沉积制备Fe 3+掺杂TiO 2纳米薄膜(Fe-TiO 2)的新方法. 应用该方法、溶胶-凝胶法和浸渍法分别制备了具有可见光响应的Fe-TiO 2光催化剂. 并用XRD、SEM、EDS和UV-vis吸收光谱对Fe-TiO 2进行了表征. 结果表明, 与溶胶-凝胶法和浸渍法相比共电沉积法不仅能有效地实现Fe 3+在TiO 2中的均匀分布, 而且, 得到的光催化剂具有最大的比表面积和最好的光降解活性. Rhodamine B (RhB)降解实验表明, 在RhB光降解中存在光敏化和光催化降解的协同效应.

本文引用格式

曹江林 , 吴祖成 , 曹发和 , 张鉴清 . 阴极共电沉积法制备 Fe 3+掺杂 TiO 2纳米薄膜及其可见光活性[J]. 无机材料学报, 2007 , 22(3) : 514 -518 . DOI: 10.3724/SP.J.1077.2007.00514

Abstract

A novel cathodic co-electrodeposition (CCED) method for the preparation of Fe 3+ -doped TiO 2 thin film (Fe-TiO 2) was studied. The thin film photocatalysts of Fe-TiO 2 containing different amounts of Fe 3+ were prepared by the
CCED, wet impregnation and sol-gel methods. The photocatalysts were characterized by X-ray diffraction analysis (XRD), specific surface area measurements, SEM-EDS and UV-vis absorption spectra. In the three types of photocatalysts, the photocatalysts obtained by CCED not only have a more homogeneous distribution of Fe 3+ , but also have the largerst specific surface area and the photodegradation activity than those obtained by the other two. In addition, the experimental results show that there is a synergetic effect of photosensitization and photocatalytic in RhB degradation.

参考文献

[1] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006, 6 (2): 215--218.
[2] Lyon L A, Hupp J T. J. Phys. Chem. B, 1999, 103 (22): 4623--4628.
[3] 曹江林, 吴祖成, 冷文华, 等. 浙江大学学报(工学版), 2006, 40 (4): 642--646.
[4] 何静, 江伟辉, 于云, 等(HE Jing, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 713--719.
[5] Navío J A, Colón G, Litter M I, et al. J. Mol. Catal. A, 1996, 106 (3): 267--276. [6] Natarajan C, Nogami G. J. Electrochem. Soc., 1996, 143 (5): 1547--1550.
[7] Karuppuchamy S, Nonomura K, Yoshida T, et al. Solid State Ionics, 2002, 151 (1-4): 19--27.
[8] Cao J L, Wu Z C, Zhang J Q. J. Electroanal. Chem., 2006, 595 (1): 71--77.
[9] Zhang Y H, Ebbinghaus S G, Weidenkaff A, et al. Chem. Mater., 2003, 15 (21): 4028--4033.
[10] Litter M I, Nav\acute io J A. J. Photochem. Photobiol. A, 1996, 98 (3): 171--181.
[11] MA Y, YAO J N. J Photochem Photobiol A, 1998, 116 (2): 167--170.
[12] Serpone N, Lawless D, Disdier J, et al. Langmuir, 1994, 10 (3): 643--652.
[13] Li Y X, Lu G X, Li S B. J. Photochem. Photobiol. A, 2002, 152 (1-3): 219--228.
[14] Litter M I, Baumgartner E C, Urrutia G A, et al. Environ. Sci. Technol., 1991, 25 (11): 1907--1913.
文章导航

/