研究论文

膨胀石墨复合材料的电磁特性及其3mm、8mm波动态衰减性能研究

  • 周明善 ,
  • 李澄俊 ,
  • 徐铭 ,
  • 吴正东
展开
  • 南京理工大学化工学院, 南京 210094

收稿日期: 2006-05-26

  修回日期: 2006-07-19

  网络出版日期: 2007-05-20

Electromagnetism Characteristics and 3mm, 8mm Wave Dynamic Attenuation Performance of Expanded Graphite Composite

  • ZHOU Ming-Shan ,
  • LI Cheng-Jun ,
  • XU Ming ,
  • WU Zheng-Dong
Expand
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2006-05-26

  Revised date: 2006-07-19

  Online published: 2007-05-20

摘要

通过高温下膨化二茂铁与可膨胀石墨混合物的方法, 制得附着铁氧化物的膨胀石墨复合材料. 铁氧化物的主要成分为Fe2O3、Fe3O4, 随着铁氧化物含量的增加, 其平均电导率呈下降趋势, 而磁化强度逐渐增强, 复合材料呈亚铁磁性. 在不影响膨胀石墨电损耗吸收的同时, 复合材料增加了磁损耗吸收, 其3mm、8mm波动态衰减效果明显优于单纯的膨胀石墨. 二茂铁和可膨胀石墨的质量比为2~3:5时, 3mm、 8mm波动态衰减能力最强.

本文引用格式

周明善 , 李澄俊 , 徐铭 , 吴正东 . 膨胀石墨复合材料的电磁特性及其3mm、8mm波动态衰减性能研究[J]. 无机材料学报, 2007 , 22(3) : 509 -513 . DOI: 10.3724/SP.J.1077.2007.00509

Abstract

The expanded graphite composites with iron oxides adsorbed were prepared by expanding the mixture of ferrocene and expandable graphite under high temperatures. The main components of iron oxides were Fe2O3, Fe3O4. With the increase of iron oxides contents, the mean conductivity of the composites dropped slowly, however, the magnetization intensity strengthened gradually. Without prejudice to the electric loss absorption of expanded graphite, the magnetic loss absorption of composites was increased. Compared with pure expanded graphite, the 3mm, 8mm wave dynamic attenuation performances of the composite were obviously superior. The 3mm, 8mm wave dynamic attenuation capabilities were strongest, when the weight ratio of ferrocene and expandable graphite was (2--3):5.

参考文献

[1] 吴翠玲, 翁文桂. 华侨大学学报, 2003, (4): 147--149.
[2] 周伟, 董建, 等. 碳素技术, 2004, (4): 27--28.
[3] Uwe Kron, Klaus Moller, Ernest Shulz. Pyrotechnic smoke generator
for camouflage purposes. U. S. Patent, 5656794. 1997. 1--5.
[4] 朱长江, 陈作如. 材料科学与工程, 2003, 21 (3): 350--352.
[5] 吴昱, 尹喜凤. 火工品, 2004, (2): 27--30.
[6] Kristan P.Gurton, Charles W. Bruce. Army Research Laboratory, 1997. 53--58.
[7] 彭俊芳, 康飞宇. 材料科学与工程, 2002, 20 (4): 469--472.
[8] R.C.O’ Hnadley, 周永洽译. 现代磁性材料原理和应用. 北京: 化学工业
出版社, 2002. 678--679.
[9] 樊邦棠. 化学通报, 1987, (10): 34--39.
[10] 左洪波, 张明福. 哈尔滨理工大学学报, 2005, 10 (4): 36--39.
[11] 宛德福, 罗世华. 磁性物理. 北京:电子工业出版社, 1987. 276.
[12] 宛德福, 马新隆. 磁性物理学. 成都: 电子科技大学出版社, 1994. 29--32.
[13] 朱长江, 陈作如. 材料科学与工程, 2002, 20 (4): 487--489.
[14] 赵东林, 沈曾民(ZHAO Dong-Lin, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 608--612.
[15] 梁彤祥, 赵宏生, 张\hspace*.12cm岳(LIANG Tong-Xiang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 659--663.
文章导航

/