采用传统氧化物法制备了MnZn铁氧体材料和NiZn铁氧体材料. 分析了贫铁MnZn铁氧体磁导率的频散特性, 在K. Itoh等人二段型频散特性模型的基础上, 提出了与实际测量数据更相符合的三段型频散特性模型, 并用三段型频散特性模型计算模拟了磁导率的频率特性曲线. 同时通过研究Fe2O3、TiO2含量对贫铁MnZn铁氧体磁导率的影响, 得出三段型频散特性模型各参数对磁导率频率特性的不同贡献.
MnZn ferrites and NiZn ferrites were prepared by conventional ceramic processing techniques. The frequency dependence of permeability of MnZn ferrites with Fe-poor composition (less than 50mol% of Fe2O3) was studied. Tri-segment frequency dispersion model which consists of domain wall motion, magnetization rotation and gyro-magnetic spin rotation was used to simulate the permeability spectra of ferrites. Effects of Fe2O3 and TiO2 content on
permeability of Fe-poor MnZn ferrites were also studied to analyze contribution of the simulating parameters.
[1] Technical Note: 3S4 a new Soft Ferrite for EMI-suppression. from: http:// www.ferroxcube.com.
[2] Kobayashi O, Yamada O. 日本应用磁气协会志, 2000, 24 (4-2): 715--718.
[3] Yamada O, Kobayashi O, Itoh K, et al. 日本应用磁气协会志, 2001, 25 (4-2): 947--950.
[4] Itoh K, Kobayashi O, Tomita M. 日本应用磁气协会志, 2002, 26 (4): 465--470.
[5] Kobayashi O, Itoh K, Tomita M. 日本应用磁气协会志, 2002, 26 (4): 689--692.
[6] Huang aiping, et al. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2006, 34 (5): 527--530.
[7] Tsutaoka T, Ueshima M, Tokunaga T. J. Appl. Phys., 1995, 78 (6): 3983--3991.
[8] Nakamura T. J. Appl. Phys., 2000, 88 (1): 348--353.
[9] Tsutaoka T. J. Appl. Phys., 2003, 93 (5): 2789--2796.