[1] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974, 26(2): 163-166.
DOI
URL
|
[2] |
STILES P L, DIERINGER J A, SHAH N C, et al. Surface- enhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 2008, 1: 601-626.
DOI
URL
|
[3] |
LIN T, SONG Y L, LIAO J, et al. Applications of surface- enhanced Raman spectroscopy in detection fields. Nanomedicine, 2020, 15(30): 2971-2989.
DOI
URL
|
[4] |
ZHANG D, YOU H, YUAN L, et al. Hydrophobic slippery surface-based surface-enhanced Raman spectroscopy platform for ultrasensitive detection in food safety applications. Analytical Chemistry, 2019, 91(7): 4687-4695.
DOI
URL
|
[5] |
GUO H, HAMLET L C, HE L, et al. A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental water. Science of the Total Environment, 2019, 653: 1034-1041.
DOI
URL
|
[6] |
D’ACUNTO M, CIONI P, GABELLIERI E, et al. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology, 2021, 32(19): 192001.
DOI
URL
|
[7] |
HAN C, YAO Y, WANG W, et al. Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sensors and Actuators B: Chemical, 2017, 251: 272-279.
DOI
URL
|
[8] |
WU C F, HU Q, XIAO C Y, et al. Preparation of Ag@Au core-shell nanoparticles on silicon wafer and their SERS properties. Journal of Xi’an Technological University, 2019, 39(3): 304-310.
|
[9] |
RYCENGA M, COBLEY C M, ZENG J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669-3712.
DOI
URL
|
[10] |
HUSANU E, CHIAPPE C, BERNARDINI A, et al. Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 506-512.
DOI
URL
|
[11] |
SOLOVYEVA E V, UBYIVOVK E V, DENISOVA A S. Effect of diaminostilbene as a molecular linker on Ag nanoparticles: SERS study of aggregation and interparticle hot spots in various environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 542-548.
DOI
URL
|
[12] |
ARAKI J, URATA T. Cellulose nanowhisker/silver nanoparticle hybrids sterically stabilized by surface poly (ethylene glycol) grafting. Langmuir, 2020, 36(36): 10868-10875.
DOI
URL
|
[13] |
NIU D, LI Y, SHI J. Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chemical Society Reviews, 2017, 46(3): 569-585.
DOI
URL
|
[14] |
JIA X, ZHANG Y, ZOU Y, et al. Dual intratumoral redox/enzyme- responsive NO-releasing nanomedicine for the specific, high- efficacy, and low-toxic cancer therapy. Advanced Materials, 2018, 30(30): 1704490.
DOI
URL
|
[15] |
NIU D, LI Y, MA Z, et al. Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Advanced Functional Materials, 2010, 20(5): 773-780.
DOI
URL
|
[16] |
LIU Y, LI Y, KANG Y, et al. Silver nanoparticle generators: silicon dioxide microspheres. Chemistry-A European Journal, 2017, 23(26): 6244-6248.
DOI
URL
|
[17] |
KHOUGAZ K, ZHONG X F, EISENBERG A. Aggregation and critical micelle concentrations of polystyrene-b-poly (sodium acrylate) and polystyrene-b-poly (acrylic acid) micelles in organic media. Macromolecules, 1996, 29(11): 3937-3949.
DOI
URL
|
[18] |
XIA Z, BAIRD L, ZIMMERMAN N, et al. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Applied Surface Science, 2017, 416: 565-573.
DOI
URL
|
[19] |
DESAI R, MANKAD V, GUPTA S K, et al. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanoscience and Nano-technology Letters, 2012, 4(1): 30-34.
|
[20] |
ZHOU Y, WANG J, YANG G, et al. Cysteine-rich protein-templated silver nanoclusters as a fluorometric probe for mercury (II) detection. Analytical Methods, 2019, 11(6): 733-738.
DOI
URL
|
[21] |
LU Y, YUE Z, XIE J, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nature Biomedical Engineering, 2018, 2(5): 318-325.
DOI
URL
|
[22] |
MUKHERJEE S G, O’CLAONADH N, CASEY A, et al. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicology In Vitro, 2012, 26(2): 238-251.
DOI
URL
|
[23] |
HUANG X B, WU S H, HU H C, et al. AuNanostar@4-MBA@Au core-shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of ochratoxin A. ACS sensors, 2020, 5(8): 2636-2643.
DOI
URL
|
[24] |
LE RU E C, BLACKIE E, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.
DOI
URL
|
[25] |
MARKINA N E, MARKIN A V, ZAKHAREVICH A M, et al. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection. Journal of Nanoparticle Research, 2016, 18(12): 1-9.
DOI
URL
|