[1] |
JUDD B R.Optical absorption intensities of rare-earth ions.Phys. Rev., 1962, 127(3): 750-761.
|
[2] |
OFELT G S.Intensities of crystal spectra of rare-earth ions.J. Chem. Phys., 1962, 37(3): 511-520.
|
[3] |
WALSH B M.Judd-Ofelt theory: principles and practices, advances in spectroscopy for laser and sensing. NATO Science series, Series II: Mathematics, Physics and Chemistry, 2006, 231: 403-433.
|
[4] |
HEHLEN M P, BRIK M G, KRAMER K W.50th anniversary of the Judd-Ofelt theory: an experimentalist’s view of the formalism and its application.J. Lumin., 2013, 136: 221-239.
|
[5] |
PEACOCK R D.The intensities of lanthanide f ↔ f transitions.Struct. Bond. Berlin, 1975, 22: 83-122.
|
[6] |
BABU P, JAYASANKAR C K.Spectroscopy of Pr3+ ions in lithium borate and lithium fluoroborate glasses.Physica B, 2011, 301(3/4): 326-340.
|
[7] |
GENOVA R T, MARTIN I R, RODRIGUEZ-MENDOZA U R,et al. Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. applications of the standard and modified Judd-Ofelt theories. J. Alloys Compd., 2004, 380(1/2): 167-172.
|
[8] |
LIU F, ZHANG J H, LU S Z, et al. Explicit effects of 4f 5d configuration on 4f 2®4f 2 electric dipole transitions in Pr3+-doped SrAl12O19. Phys. Rev. B, 2006, 74(11): 115112-1-6.
|
[9] |
FLOREZ A, FLOREZ M, MESSADDEQ Y,et al. Application of standard and modified Judd-Ofelt theories to thulium doped fluoroindate glass. J. Non-Cryst. Solids, 1999, 247(1/2/3): 215-221.
|
[10] |
QUIMBY R S, MINISCALCO W J.Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass.J. Appl. Phys., 1994, 75(1): 613-615.
|
[11] |
WALSH B M, BARNES N P, BARTOLO B D.Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4.J. Appl. Phys., 1998, 83(5): 2772-2787.
|
[12] |
ZHENG Y F, CHEN B J, ZHONG H Y,et al. Optical transition, excitation state absorption, and energy transfer study of Er3+, Nd3+ single-doped, and Er3+/Nd3+ codoped tellurite glasses for mid- infrared laser applications. J. Am. Ceram. Soc., 2011, 94(6): 1766-1772.
|
[13] |
SAISUDHA M B, RAMAKRISHNA J.Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses. Phys. Rev. B, 1996, 53(10): 6186-6196.
|
[14] |
YANG Y M, YAO B Q, CHEN BJ,et al. Judd-Ofelt analysis of spectroscopic properties of Tm3+, Ho3+ doped GdVO4 crystals. Opt. Mater., 2007, 29(9): 1159-1165.
|
[15] |
LIU L Q, CHEN X Y.Energy levels, fluorescence lifetime and Judd-Ofelt parameters of Eu3+ in Gd2O3 nanocrystals.Nanotechnology, 2007, 18(25): 255704.
|
[16] |
LUO W Q, LIAO J S, LI R F,et al. Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. Phys. Chem. Chem. Phys., 2010, 12(13): 3276-3282.
|
[17] |
TIAN B N, CHEN B J, TIAN Y,et al. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors. J. Mater. Chem. C, 2013, 1(12): 2338-2344.
|
[18] |
PATHAK T K, SWART H C, KROOM R E.Influence of Bi doping on the structure and photoluminescence of ZnO phosphor synthesized by the combustion method.Spectroschim. Acta A, 2018, 190: 164-171.
|
[19] |
KORTUM G.Reflectance Spectroscopy: Principles, Methods, Applications, Translated from the German by J. E. Lohr. Springer-Verlag New York Inc, 1969.
|
[20] |
TIAN Y, CHEN B J, YU H Q,et al. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres. J. Colloid Interf. Sci., 2011, 360(2): 586-592.
|
[21] |
VETRONE F, BOYER J C, CAPOBIANCO J A,et al. NIR to visible upconversion in nanocrystalline and bulk Lu2O3:Er3+. J. Phys. Chem. B, 2002, 106(22): 5622-5628.
|