[1] |
LU W, XIONG C, ZHANG G D,et al. Targeted photothermal abltion of murnemelanomas with melanocyte-stimulating hormone analog conjugated hollow gold nanospheres.Clin. Cancer. Res., 2009, 15(3): 876-886.
|
[2] |
TAKOR A S, GAMBHIR S S.Nanooncology: the future of cancer diagnosis and therapy.CA. Cancer J. Clin., 2013, 63(6): 395-399.
|
[3] |
VOGEL A, VENUGOPALAN V.Mechanisms of pulsed laser ablation of biological tissues.Chem. Rev., 2003, 103(2): 577-581.
|
[4] |
YANG J, CHOI J, BANG D,et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells.Angew. Chem. Int. Ed., 2011, 50(2): 441-444.
|
[5] |
ZHAI YUN GANG, DONG WEN JIE, GAO YONG PING,et al. Preparation of superparamagnetic gold nanocomposites with different diameters and their imaging and therapy applications.Journal of Inorganic Materials, 2015, 30(9): 950-956.
|
[6] |
YANG J, CHOI J, BANG D,et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells.Angew. Chem. Int. Ed., 2011, 50(2): 441-444.
|
[7] |
THAKARE V S, DAS M, JAIN A K,et al. Carbon nanotubes in cancer theragnosis.Nanomedicine, 2010, 5(8): 1277-1301.
|
[8] |
HIESCH L R, STAFFORD R J, BANKSON J A.et al. Nanoshell- media-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl. Acad. Sci. USA, 2003, 100(23): 13549-13554.
|
[9] |
HUANG X, JAIN P K, El-SAYED I H.et al. Plasmonic photo-thermal therapy (PPTT) using gold nanoparticles. Alex. J. Med., 2011, 47(15): 1-9.
|
[10] |
HAO Y W, ZHANG B X, ZHENG C X,et al.The tumor-targeting core-shell structured DTX-loaded PLGA@Au nanoparticles for chemo-photothermal therapy and X-ray imaging. Journal of Controlled Release, 2015, 220: 545-555.
|
[11] |
LI J L, GU M.Gold-nanoparticle-enhanced cancer photothermal therapy.IEEE J. Sel. Top Quant Electron., 2010, 16(4): 989-996.
|
[12] |
LI Z, HUANG P, ZHANG X,et al.RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharmaceutics., 2010, 7(1): 94-104.
|
[13] |
LI Z B, HUANG H, TANGS Y,et al. Small gold nanorods laden mac rophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74(30): 144-154.
|
[14] |
CHAKRAVARTY P, MARCHES R, ZIMMERMAN N S,et al.Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes.Proc. Natl. Acad. Sci. USA, 2008, 105(25): 8697-8702.
|
[15] |
ZHANG Z, LIU S, XIONG H.Electrospun PLA/MWCNTs composite nanofibers for combined chemo- and photothermaltherapy.Acta Biomaterialia, 2015, 26(20): 115-123.
|
[16] |
POLAND C A, DUFFIN R, KINLOCH I,et al.Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol., 2008, 3(7): 423-428.
|
[17] |
LANBERT T N, ANDREWS N L, GERUNG H, et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Biomaterials, 2008, 29(5): 1912-1919.
|
[18] |
DABBOUSI B O, RODRIGUEZVIEJO J, FV MIKULEC F V,et al.(CdSe) ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Bacterior., 1997, 182(13): 3649-3654.
|
[19] |
LEE C, KIM H, HONG C,et al.Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J. Mater. Chem., 2008, 18(40): 4790-4795.
|
[20] |
YANG K, ZHANG S A, ZHANG G X,et al.Graphene in mice: ultra hig in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9): 3318-3323.
|
[21] |
SHARKER S M, KIM S M, LEE J E,et al.Functionalized biocom-patible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217: 211-220.
|
[22] |
YANG C, MA L, ZOU X J,et al.Surface plasmon-enhanced Ag/CuS nanocomposites for cancer treatment. Cancer Nano, 2013, 4(4/5): 81-89.
|
[23] |
SHERLOCK S P, TABAKAN S M, XIE L,et al.Photothermally enhanced drug delivery by ultra-small multifunctional FeCo/ graphitic-shell nanocrystals. ACS Nano, 2011, 5(2): 1505-1512.
|
[24] |
KRYUKOV A I, STROYUK A L, ZIN'CHUK N N,et al. Optical and catalytic properties of Ag2S nanoparticles. Journal of Molecular Catalysis A: Chemical, 2004, 221(1/2): 209-221.
|
[25] |
WANG Q T, WANG X B, LOU W J,et al.Synthesis of bismuth sulfide nanostructures and their electrochemical hydrogen storage behavior. New Journal of Chemistry, 2010, 34(9): 1930-1935.
|
[26] |
HONGG S, ROBINSON J T, ZHANG Y J,et al.In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. 2012, 51(39): 9818-9821.
|
[27] |
LI C Y, ZHANG Y J, WANG M,et al.In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials, 2014, 35(1): 393-400.
|
[28] |
ROPER D K, AHN W, HOEPFNER M.Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles.J. Phys. Chem. C, 2007, 111(9): 3636-9641.
|
[29] |
YUWEN L H, ZHOU J J, ZHANG Y Q,et al.Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale, 2016, 8: 2720-2726.
|
[30] |
TIAN Q W, JIANG F R, ZOU R J,et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.ACS Nano, 2011, 5(12): 9761-9771.
|
[31] |
HONG G S, ROBINSON T J, ZHANG Y J,et al.In-vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region.Angew. Chem. Int. Ed., 2012, 51(39): 9818-9821.
|
[32] |
DU Y P, XU B, FU T,et al.Near-infrared photoluminescent Ag2S quantum dots from a single source precursor.Journal of the American Chemical Society, 2010, 132(5): 1470-1471.
|